

Hands-On
Web Scraping with Python

Extract quality data from the web using effective
Python techniques

Anish Chapagain

BIRMINGHAM—MUMBAI

Hands-On Web Scraping with Python
Copyright © 2023 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Rohit Rajkumar
Publishing Product Manager: Bhavya Rao
Book Project Manager: Aishwarya Mohan
Senior Editor: Rashi Dubey
Technical Editor: Simran Ali
Copy Editor: Safis Editing
Language Support Editor: Safis Editing
Proofreader: Safis Editing
Indexer: Tejal Daruwale Soni
Production Designer: Shankar Kalbhor
DevRel Marketing Coordinators: Nivedita Pandey and Namita Velgekar

First published: July 2019
Second edition: October 2023

Production reference: 1050923

Published by Packt Publishing Ltd.
Grosvenor House
11 St Paul’s Square
Birmingham
B3 1RB, UK.

ISBN 978-1-83763-621-1

www.packtpub.com

http://www.packtpub.com

To my daughter, Aasira, and my family and friends.
To my wife, Rakshya, for being my loving partner throughout my life journey.

Special thanks to Atmeshwar Chapagain, Shiba Chapagain, Ashish Chapagain,
Peter, and Prof. W. J. Teahan. This book is dedicated to you all.

– Anish Chapagain

Contributors

About the author
Anish Chapagain is a software engineer with a passion for data science and artificial intelligence
processes and Python programming, which began around 2007. He has been working on web scraping,
data analysis, visualization, and reporting-related tasks and projects for more than 10 years, and also
works as a freelancer. Anish previously worked as a trainer, web/software developer, team leader, and
banker, where he was exposed to data and gained insights into topics such as data mining, data analysis,
reporting, information processing, and knowledge discovery. He has an MSc in computer systems
from Bangor University (United Kingdom), and an executive MBA from Himalayan Whitehouse
International College, Kathmandu, Nepal.

About the reviewers
Sanjan Rao is a senior data scientist with over five years of experience in machine learning, deep
learning, and cybersecurity solutions. He has a master’s degree with a specialty in machine learning
and artificial intelligence. His primary interests lie in natural language processing, natural language
inference, and reinforcement learning.

Joel Edmond Nguemeta is a full stack web developer from Cameroon. He is highly experienced in
software development with Python, Django, JavaScript, and React in both monolithic and microservices
architectures. He has worked as a freelance mentor/assessor at OpenClassrooms, supporting students
in Python/Django and JavaScript/React application development, as well as assessing them in the
Python/Django and JavaScript/React application developer courses. Furthermore, he has worked as
a mobile developer at Tamangwa Shipping. He spends his time sharing his knowledge with everyone
through his YouTube channel (proxidev). He is the co-founder of the start-up EasyLern.

Preface� xiii

Part 1: Python and Web Scraping

1
Web Scraping Fundamentals� 3

Technical requirements� 4
What is web scraping?� 4
Understanding the latest web
technologies� 5
HTTP� 5
HTML� 9
XML� 12
JavaScript� 13

CSS� 16

Data-finding techniques
used in web pages� 17
HTML source page� 17
Developer tools� 19

Summary� 25
Further reading� 26

2
Python Programming for Data and Web� 27

Technical requirements� 28
Why Python (for web scraping)?� 28
Accessing the WWW with Python� 31
Setting things up� 31
Creating a virtual environment� 33
Installing libraries� 35
Loading URLs� 37

URL handling and operations� 39
requests – Python library� 40

Implementing HTTP methods� 48
GET� 49
POST� 50

Summary� 52
Further reading� 52

Table of Contents

Table of Contentsviii

Part 2: Beginning Web Scraping

3
Searching and Processing Web Documents� 57

Technical requirements� 57
Introducing XPath and CSS selectors
to process markup documents� 58
The Document Object Model (DOM)� 59
XPath� 60
CSS selectors� 64

Using web browser DevTools to
access web content� 68
HTML elements and DOM navigation� 69

XPath and CSS selectors using DevTools� 71

Scraping using lxml – a Python library� 72
lxml by example� 73
Web scraping using lxml� 77

Parsing robots.txt and sitemap.xml� 81
The robots.txt file� 81
Sitemaps� 83

Summary� 84
Further reading� 85

4
Scraping Using PyQuery, a jQuery-Like Library for Python� 87

Technical requirements� 87
PyQuery overview� 88
Introducing jQuery� 89

Exploring PyQuery� 89
Installing PyQuery� 89
Loading a web URL� 91
Element traversing, attributes,
and pseudo-classes� 91

Iterating using PyQuery� 95

Web scraping using PyQuery� 96
Example 1 – scraping book details� 97
Example 2 – sitemap to CSV� 99
Example 3 – scraping quotes with author
details� 102

Summary� 107
Further reading� 108

5
Scraping the Web with Scrapy and Beautiful Soup� 109

Technical requirements� 109
Web parsing using Python� 110
Introducing Beautiful Soup� 111

Installing Beautiful Soup� 111
Exploring Beautiful Soup� 112

Web scraping using Beautiful Soup� 121

Table of Contents ix

Web scraping using Scrapy� 124
Setting up a project� 125
Creating an item� 128
Implementing the spider� 128

Exporting data� 129

Deploying a web crawler� 130
Summary� 134
Further reading� 134

Part 3: Advanced Scraping Concepts

6
Working with the Secure Web� 137

Technical requirements� 137
Exploring secure web content� 138
Form processing� 138
Cookies and sessions� 139
User authentication� 141

HTML <form> processing using
Python� 142
User authentication and cookies� 147
Using proxies� 151
Summary� 155
Further reading� 155

7
Data Extraction Using Web APIs� 157

Technical requirements� 157
Introduction to web APIs� 158
Types of API� 159
Benefits of web APIs� 160

Data formats and patterns in APIs� 162
Example 1 – sunrise and sunset� 163
Example 2 – GitHub emojis� 164

Example 3 – Open Library� 165

Web scraping using APIs� 166
Example 1 – holidays from the US calendar� 166
Example 2 – Open Library book details� 168
Example 3 – US cities and time zones� 169

Summary� 171
Further reading� 171

8
Using Selenium to Scrape the Web� 173

Technical requirements� 173
Introduction to Selenium� 174

Advantages and disadvantages of Selenium� 175
Use cases of Selenium� 175

Table of Contentsx

Components of Selenium� 176

Using Selenium WebDriver� 177
Setting things up� 177
Exploring Selenium� 181

Scraping using Selenium� 187
Example 1 – book information� 187
Example 2 – forms and searching� 191

Summary� 193
Further reading� 193

9
Using Regular Expressions and PDFs� 195

Technical requirements� 196
Overview of regex� 196
Regex with Python� 197
re (search, match, and findall)� 198
re.split� 201
re.sub� 202
re.compile� 202
Regex flags� 204

Using regex to extract data� 206

Example 1 – Yamaha dealer information� 206
Example 2 – data from sitemap� 208
Example 3 – Godfrey’s dealer� 210

Data extraction from a PDF� 211
The PyPDF2 library� 212
Extraction using PyPDF2� 213

Summary� 217
Further reading� 218

Part 4: Advanced Data-Related Concepts

10
Data Mining, Analysis, and Visualization� 221

Technical requirements� 222
Introduction to data mining� 222
Predictive data mining� 224
Descriptive data mining� 224

Handling collected data� 225
Basic file handling� 225
JSON� 227
CSV� 229

SQLite� 233

Data analysis and visualization� 234
Exploratory Data Analysis using
ydata_profiling� 235
pandas and plotly� 237

Summary� 246
Further reading� 247

Table of Contents xi

11
Machine Learning and Web Scraping� 249

Technical requirements� 249
Introduction to ML� 250
ML and Python programming� 251
Types of ML� 255

ML using scikit-learn� 261

Simple linear regression� 261
Multiple linear regression� 267
Sentiment analysis� 268

Summary� 273
Further reading� 274

Part 5: Conclusion

12
After Scraping – Next Steps and Data Analysis� 277

Technical requirements� 277
What happens after scraping?� 277
Web requests� 278
pycurl� 278
Proxies� 281

Data processing� 283

PySpark� 283
polars� 284

Jobs and careers� 285
Summary� 286
Further reading� 287

Index� 289

Other Books You May Enjoy� 300

Preface

Web scraping is used to scrape and collect data from the web. The data collected from scraping is used
to generate and identify patterns in the information.

In today’s technical – or, more precisely, data-driven – fields and markets, quick and reliable information
is in very high demand. Data collected in CSV or JSON format and from databases is processed to
generate error-free and high-quality data, which is then analyzed, trained using machine learning
algorithms, and plotted. The resulting information is carried forward for decision-making or supportive
business intelligence-related tasks.

The chapters of this book are designed in such a way that each section helps you to understand
certain important concepts and practical experiences. If you complete all the chapters of the book,
then you will gain practice in scraping data from desired websites and analyzing and reporting data.
You will also learn about the career paths and jobs related to web scraping, data analysis, reporting,
visualization, and machine learning.

Who this book is for
This book is for Python programmers, data analysts, data reporters, machine learning practitioners,
and anyone who wants to begin their professional or learning journey in the field of web scraping
and data science. If you have a basic understanding of the Python programming language, you will
easily be able to follow along with the book and learn about some advanced concepts related to data.

What this book covers
Chapter 1, Web Scraping Fundamentals, provides an introduction to web scraping and also explains
the latest core web technologies and data-finding techniques.

Chapter 2, Python Programming for Data and Web, provides an overview of choosing and using Python
for web scraping. The chapter also explores and explains the World Wide Web (WWW) and URL-based
operations by setting up and using the necessary Python libraries, tools, and virtual environments.

Chapter 3, Searching and Processing Web Documents, provides an overview of and introduction to
identifying, traversing, and processing web documents using XPath and CSS selectors. The chapter
also explains scraping using lxml, collecting data in a file, parsing information from robots.txt,
and exploring sitemaps.

Prefacexiv

Chapter 4, Scraping Using Pyquery, a jQuery-Like Library for Python, provides an introduction to a
jQuery-like Python library: pyquery. This chapter provides information on installing and exploring
pyquery’s features on web documents. Examples of scraping using pyquery and writing data to JSON
and CSV are also covered.

Chapter 5, Scraping the Web with Scrapy and Beautiful Soup, provides an overview and examples
of using and deploying a popular web-crawling framework: Scrapy. It also introduces parsing and
scraping using BeautifulSoup.

Chapter 6, Working with the Secure Web, provides an overview of dealing with secure web content,
using sessions and cookies. The chapter also guides you through and explores scraping content by
processing HTML form- and authentication-related issues, as well as providing a guide with examples
of how to use proxies during HTTP communication.

Chapter 7, Data Extraction Using Web APIs, provides a detailed overview of the web API, its benefits
when used with HTTP content, along with the data formats and patterns available in the API. The
chapter also provides a few examples of scraping the web API.

Chapter 8, Using Selenium to Scrape the Web, introduces Selenium WebDriver, which helps automate
actions in web browsers, and also covers how to use Selenium to scrape data.

Chapter 9, Using Regular Expressions and PDFs, provides a detailed overview of regular expressions and
their usage and implementation using Python. The chapter also provides examples of data extraction
using regular expressions and PDF documents using the pypdf2 Python library.

Chapter 10, Data Mining, Analysis, and Visualization, provides an introduction to and detailed overview
of data mining and data analysis using the pandas Python library and visualization using Plotly.
The chapter also introduces the concept of exploratory data analysis using the ydata_profiling
Python library.

Chapter 11, Machine Learning and Web Scraping, provides a detailed introduction to machine learning,
a branch of artificial intelligence. The chapter also provides examples of a few machine learning topics
using the scikit-learn Python library, along with conducting sentiment analysis from scraped
and collected data.

Chapter 12, After Scraping – Next Steps and Data Analysis, provides an overview of and introduction
to the next steps related to growing technologies, covering topics such as web requests and data
processing in more detail. The chapter also provides information on and guides developers in exploring
prospective careers and jobs relating to scraping and data.

Preface xv

To get the most out of this book
Having some basic or intermediate knowledge of Python programming will help you get the most
out of the book’s contents and examples.

Software/hardware covered in the book Operating system requirements
Python 3.11 Windows, macOS, or Linux
Google Chrome or Mozilla Firefox Windows, macOS, or Linux
Visual Studio Code or JetBrains PyCharm Community Edition Windows, macOS, or Linux

If you are using the digital version of this book, we advise you to type the code yourself or access
the code from the book’s GitHub repository (a link is available in the next section). Doing so will
help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition. If
there’s an update to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “Here, we have
expressed our interest in only finding the information from the content attribute with the <meta>
tag, which has the name attribute with the keywords and description values, respectively.”

A block of code is set as follows:

source.find(‘a:contains(“Web”)’) # [<a.menuitm>, <a>, <a>, <a>,
<a>]

source.find(‘a:contains(“Web”):last’).text()

‘Web Scraper’

source.find(‘a:contains(“Web”):last’).attr(‘href’) # ‘#’

https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Prefacexvi

Any command-line input or output is written as follows:

(secondEd) C:\HOWScraping2E> pip install jupyterlab

Outputs and comments inside blocks of code look as follows:

[<a.menuitm>, <a>, <a>, <a>, <a>]

‘Web Scraper’

‘#’

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words
in menus or dialog boxes appear in bold. Here is an example: “In addition, we will create separate
files for author and quotes.”

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com

Preface xvii

Share Your Thoughts
Once you’ve read Hands-On Web Scraping with Python Second Edition, we’d love to hear your thoughts!
Please https://packt.link/r/1837636214 for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

https://packt.link/r/1837636214

Prefacexviii

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?
Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below

https://packt.link/free-ebook/9781837636211

2.	 Submit your proof of purchase

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781837636211

Part 1:
Python and Web Scraping

In this part, you will be introduced to and get a detailed overview of web scraping and how it relates
to Python programming. You will learn about various technologies related to websites and HTTP. In
addition, application tools and the necessary Python libraries are also covered.

This part contains the following chapters:

•	 Chapter 1, Web Scraping Fundamentals

•	 Chapter 2, Python Programming for Data and Web

1
Web Scraping Fundamentals

This book about web scraping covers practical concepts with detailed explanations and example code.
We will introduce you to the essential topics in extracting or scraping data (that is, high-quality data)
from websites, using effective techniques from the web and the Python programming language.

In this chapter, we are going to understand basic concepts related to web scraping. Whether or not
you have any prior experience in this domain, you will easily be able to proceed with this chapter.

The discussion of the web or websites in our context refers to pages or documents including text,
images, style sheets, scripts, and video contents, built using a markup language such as HTML. It’s
almost a container of various content.

The following are a couple of common queries in this context:

•	 Why web scraping?

•	 What is it used for?

Most of us will have come across the concept of data and the benefits or usage of data in deriving
information, decision-making, gaining insights from facts, or even knowledge discovery. There has
been growing demand for data, or high-quality data, in most industries globally (such as governance,
medical sciences, artificial intelligence, agriculture, business, sport, and R&D).

We will learn what exactly web scraping is, explore the techniques and technologies it is associated
with, and find and extract data from the web, with the help of the Python programming language,
in the chapters ahead.

In this chapter, we are going to cover the following main topics:

•	 What is web scraping?

•	 Understanding the latest web technologies

•	 Data-finding techniques

Web Scraping Fundamentals4

Technical requirements
You can use any Operating System (OS) (such as Windows, Linux, or macOS) along with an
up-to-date web browser (such as Google Chrome or Mozilla Firefox) installed on your PC or laptop.

What is web scraping?
Scraping is a process of extracting, copying, screening, or collecting data. Scraping or extracting
data from the web (a buildup of websites, web pages, and internet-related resources) for certain
requirements is normally called web scraping. Data collection and analysis are crucial in information
gathering, decision-making, and research-related activities. However, as data can be easily manipulated,
web scraping should be carried out with caution.

The popularity of the internet and web-based resources is causing information domains to evolve
every day, which is also leading to growing demand for raw data. Data is a basic requirement in the
fields of science and technology, and management. Collected or organized data is processed, analyzed,
compared with historical data, and trained using Machine Learning (ML) with various algorithms
and logic to obtain estimations and information and gain further knowledge.

Web scraping provides the tools and techniques to collect data from websites, fit for either personal
or business-related needs, but with legal considerations.

As seen in Figure 1.1, we obtain data from various websites based on our needs, write/execute crawlers,
collect necessary content, and store it. On top of this collected data, we do certain analyses and come
up with some information related to decision-making.

Figure 1.1: Web scraping – storing web content as data

We will explore more about scraping and the analysis of data in later chapters.

There are some legal factors that are also to be considered before performing scraping tasks. Most
websites contain pages such as Privacy Policy, About Us, and Terms and Conditions, where
information on legal action and prohibited content, as well as general information, is available. It is
a developer’s ethical duty to comply with these terms and conditions before planning any scraping
activities on a website.

Understanding the latest web technologies 5

Important note
Scraping, web scraping, and crawling are terms that are generally used interchangeably in
both the industry and this book. However, they have slightly different meanings. Crawling,
also known as spidering, is a process used to browse through the links on websites and is often
used by search engines for indexing purposes, whereas scraping is mostly related to content
extraction from websites.

You now have a basic understanding of web scraping. We will try to explore and understand the latest
web-based technologies that are extremely helpful in web scraping in the upcoming section.

Understanding the latest web technologies
A web page is not only a document or container of content. The rapid development in computing
and web-related technologies today has transformed the web, with more security features being
implemented and the web becoming a dynamic, real-time source of information. Many scraping
communities gather historic data; some analyze hourly data or the latest obtained data.

At our end, we (users) use web browsers (such as Google Chrome, Mozilla Firefox, and Safari) as an
application to access information from the web. Web browsers provide various document-based
functionalities to users and contain application-level features that are often useful to web developers.

Web pages that users view or explore through their browsers are not just single documents. Various
technologies exist that can be used to develop websites or web pages. A web page is a document
that contains blocks of HTML tags. Most of the time, it is built with various sub-blocks linked as
dependent or independent components from various interlinked technologies, including JavaScript
and Cascading Style Sheets (CSS).

An understanding of the general concepts of web pages and the techniques of web development, along
with the technologies found inside web pages, will provide more flexibility and control in the scraping
process. A lot of the time, a developer can also employ reverse-engineering techniques.

Reverse engineering is an activity that involves breaking down and examining the concepts that were
required to build certain products. For more information on reverse engineering, please refer to
the GlobalSpec article How Does Reverse Engineering Work?, available at https://insights.
globalspec.com/article/7367/how-does-reverse-engineering-work.

Here, we will introduce and explore a few of the available web technologies that can help and guide
us in the process of data extraction.

HTTP

Hypertext Transfer Protocol (HTTP) is an application protocol that transfers resources (web-based),
such as HTML documents, between a client and a web server. HTTP is a stateless protocol that follows
the client-server model. Clients (web browsers) and web servers communicate or exchange information
using HTTP requests and HTTP responses, as seen in Figure 1.2:

https://insights.globalspec.com/article/7367/how-does-reverse-engineering-work
https://insights.globalspec.com/article/7367/how-does-reverse-engineering-work

Web Scraping Fundamentals6

Figure 1.2: HTTP (client and server or request-response communication)

Requests and responses are cyclic in nature – they are like questions and answers from clients to the
server, and vice versa.

Another encrypted and more secure version of the HTTP protocol is Hypertext Transfer Protocol Secure
(HTTPS). It uses Secure Sockets Layer (SSL) (learn more about SSL at https://developer.
mozilla.org/en-US/docs/Glossary/SSL) and Transport Layer Security (TLS)
(learn more about TLS at https://developer.mozilla.org/en-US/docs/Glossary/
TLS) to communicate encrypted content between a client and a server. This type of security allows clients
to exchange sensitive data with a server in a safe manner. Activities such as banking, online shopping,
and e-payment gateways use HTTPS to make sensitive data safe and prevent it from being exposed.

Important note
An HTTP request URL begins with http://, for example, http://www.packtpub.com,
and an HTTPS request URL begins with https://, such as https://www.packpub.com.

You have now learned a bit about HTTP. In the next section, you will learn about HTTP requests (or
HTTP request methods).

HT TP requests (or HT TP request methods)

Web browsers or clients submit their requests to the server. Requests are forwarded to the server using
various methods (commonly known as HTTP request methods), such as GET and POST:

•	 GET: This is the most common method for requesting information. It is considered a safe
method as the resource state is not altered here. Also, it is used to provide query strings, such as
https://www.google.com/search?q=world%20cup%20football&source=hp,
which is requesting information from Google based on the q (world cup football) and source
(hp) parameters sent with the request. Information or queries (q and source in this example)
with values are displayed in the URL.

https://developer.mozilla.org/en-US/docs/Glossary/SSL
https://developer.mozilla.org/en-US/docs/Glossary/SSL
https://developer.mozilla.org/en-US/docs/Glossary/TLS
https://developer.mozilla.org/en-US/docs/Glossary/TLS
http://www.packtpub.com
https://www.packpub.com
https://www.google.com/search?q=world%20cup%20football&source=hp

Understanding the latest web technologies 7

•	 POST: Used to make a secure request to the server. The requested resource state can be altered.
Data posted or sent to the requested URL is not visible in the URL but rather transferred with
the request body. It is used to submit information to the server in a secure way, such as for
logins and user registrations.

We will explore more about HTTP methods in the Implementing HTTP methods section of Chapter 2.

There are two main parts to HTTP communication, as seen in Figure 1.2. With a basic idea about
HTTP requests, let’s explore HTTP responses in the next section.

HT TP responses

The server processes the requests, and sometimes also the specified HTTP headers. When requests
are received and processed, the server returns its response to the browser. Most of the time, responses
are found in HTML format, or even, in JavaScript and other document types, in JavaScript Object
Notation (JSON) or other formats.

A response contains status codes, the meaning of which can be revealed using Developer Tools
(DevTools). The following list contains a few status codes along with some brief information about
what they mean:

•	 200: OK, request succeeded

•	 404: Not found, requested resource cannot be found

•	 500: Internal server error

•	 204: No content to be sent

•	 401: Unauthorized request was made to the server

There are also some groups of responses that can be identified from a range of HTTP response statuses:

•	 100–199: Informational responses

•	 200–299: Successful responses

•	 300–399: Redirection responses

•	 400–499: Client error

•	 500–599: Server error

Important note
For more information on cookies, HTTP, HTTP responses, and status codes, please consult
the official documentation at https://www.w3.org/Protocols/ and https://
developer.mozilla.org/en-US/docs/Web/HTTP/Status.

https://www.w3.org/Protocols/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status

Web Scraping Fundamentals8

Now that we have a basic idea about HTTP responses and requests, let us explore HTTP cookies (one
of the most important factors in web scraping).

HT TP cookies

HTTP cookies are data sent by the server to the browser. This data is generated and stored by websites
on your system or computer. It helps to identify HTTP requests from the user to the website. Cookies
contain information regarding session management, user preferences, and user behavior.

The server identifies and communicates with the browser based on the information stored in the cookies.
Data stored in cookies helps a website to access and transfer certain saved values, such as the session
ID and expiration date and time, providing a quick interaction between the web request and response.

Figure 1.3 displays the list of request cookies from https://www.fifa.com/fifaplus/en,
collected using Chrome DevTools:

Figure 1.3: Request cookies

We will explore and collect more information about and from browser-based DevTools in the upcoming
sections and Chapter 3.

Important note
For more information about cookies, please visit About Cookies at http://www.
aboutcookies.org/ and All About Cookies at http://www.allaboutcookies.org/.

Similar to the role of cookies, HTTP proxies are also quite important in scraping. We will explore
more about proxies in the next section, and also in some later chapters.

https://www.fifa.com/fifaplus/en
http://www.aboutcookies.org/
http://www.aboutcookies.org/

Understanding the latest web technologies 9

HT TP proxies

A proxy server acts as an intermediate server between a client and the main web server. The web
browser sends requests to the server that are actually passed through the proxy, and the proxy returns
the response from the server to the client.

Proxies are often used for monitoring/filtering, performance improvement, translation, and security
for internet-related resources. Proxies can also be bought as a service, which may also be used to deal
with cross-domain resources. There are also various forms of proxy implementation, such as web
proxies (which can be used to bypass IP blocking), CGI proxies, and DNS proxies.

You can buy or have a contract with a proxy seller or a similar organization. They will provide you with
various types of proxies according to the country in which you are operating. Proxy switching during
crawling is done frequently – a proxy allows us to bypass restricted content too. Normally, if a request
is routed through a proxy, our IP is somewhat safe and not revealed as the receiver will just see the
third-party proxy in their detail or server logs. You can even access sites that aren’t available in your
location (that is, you see an access denied in your country message) by switching to a different proxy.

Cookie-based parameters that are passed in using HTTP GET requests, HTML form-related HTTP
POST requests, and modifying or adapting headers will be crucial in managing code (that is, scripts)
and accessing content during the web scraping process.

Important note
Details on HTTP, headers, cookies, and so on will be explored more in an upcoming section, Data-
finding techniques used in web pages. Please visit the HTTP page in the MDN web docs (https://
developer.mozilla.org/en-US/docs/Web/HTTP) for more detailed information
on HTTP and related concepts. Please visit https://www.softwaretestinghelp.
com/best-proxy-server/ for information on the best proxy server.

You now understand general concepts regarding HTTP (including requests, responses, cookies, and
proxies). Next, we will understand the technology that is used to create web content or make content
available in some predefined formats.

HTML

Websites are made up of pages or documents containing text, images, style sheets, and scripts, among
other things. They are often built with markup languages such as Hypertext Markup Language
(HTML) and Extensible Hypertext Markup Language (XHTML).

HTML is often referred to as the standard markup language used for building a web page. Since the
early 1990s, HTML has been used independently as well as in conjunction with server-based scripting
languages, such as PHP, ASP, and JSP. XHTML is an advanced and extended version of HTML, which
is the primary markup language for web documents. XHTML is also stricter than HTML, and from a
coding perspective, is also known as an application built with Extensible Markup Language (XML).

https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://www.softwaretestinghelp.com/best-proxy-server/
https://www.softwaretestinghelp.com/best-proxy-server/

Web Scraping Fundamentals10

HTML defines and contains the content of a web page. Data that can be extracted, and any information-
revealing data sources, can be found inside HTML pages within a predefined instruction set or markup
elements called tags. HTML tags are normally a named placeholder carrying certain predefined
attributes, for example, <a>, , <table>, , and <script>.

HTML is a container or type of markup language. Various factors are involved in building HTML;
the next section defines these factors with some examples.

HTML elements and attributes

HTML elements (also referred to as document nodes) are the building blocks of web documents.
HTML elements are built with a start tag, <..>, and an end tag, </..>, with certain content inside
them. An HTML element can also contain attributes, usually defined as attribute-name =
attribute-value, which provide additional information to the element:

<p>normal paragraph tags</p>
<h1>heading tags there are also h2, h3, h4, h5, h6</h1>
Click here for Google.com

The preceding code can be broken down as follows:

•	 <p> and <h1> are HTML elements containing general text information (element content).

•	 <a> is defined with an href attribute that contains the actual link that will be processed when
the text Click here for Google.com is clicked. The link refers to https://www.google.
com/.

•	 The image tag also contains a few attributes, such as src and alt, along with their
respective values. src holds the resource, which means the image address or image URL, as a
value, whereas alt holds the value for alternative text (mostly displayed when there is a slow
connection or the image is not able to load) for .

•	
 represents a line break in HTML and has no attributes or text content. It is used to
insert a new line in the layout of the document.

HTML elements can also be nested in a tree-like structure with a parent-child hierarchy, as follows:

<div class="article">
  <p id="mainContent" class="content">
    Paragraph Content
      <img src="mylogo.png" id="pageLogo" alt="Logo"
        class="logo"/>
  </p>
  <p>

https://www.google.com/
https://www.google.com/

Understanding the latest web technologies 11

    <h3> Paragraph Title: Web Scraping</h3>
  </p>
</div>

As seen in the preceding code, two <p> child elements are found inside an HTML <div> block.
Both child elements carry certain attributes and various child elements as their content. Normally,
HTML documents are built with the aforementioned structure.

As seen in the preceding code block in the last example, there are a few extra key-value pairs. The
next section explores this.

Global attributes

HTML elements can contain some additional information, such as key-value pairs. These are also
known as HTML element attributes. Attributes hold values and provide identification, or contain
additional information that can be helpful in many aspects during scraping activities, such as identifying
exact web elements and extracting values or text from them and traversing (moving along) elements.

There are certain attributes that are common to HTML elements or can be applied to all HTML elements.
The following list mentions some of the attributes that are identified as global attributes (https://
developer.mozilla.org/en-US/docs/Web/HTML/Global_attributes):

•	 id: This attribute’s values should be unique to the element they are applied to

•	 class: This attribute’s values are mostly used with CSS, providing equal state formatting
options, and can be used with multiple elements

•	 style: This specifies inline CSS styles for an element

•	 lang: This helps to identify the language of the text

Important note
The id and class attributes are mostly used to identify or format individual elements or
groups of them. These attributes can also be managed by CSS and other scripting languages.
These attributes can be identified by placing # and ., respectively, in front of the attribute name
when used with CSS, or while traversing and applying parsing techniques.

HTML element attributes can also be overwritten or implemented dynamically using scripting
languages. As displayed in the following example, itemprop attributes are used to add properties
to an element, whereas data-* is used to store data that is native to the element itself:

<div itemscope itemtype="http://schema.org/Place">
   <h1 itemprop="univeristy">University of Helsinki</h1>
   Subject: Artificial
      Intelligence

https://developer.mozilla.org/en-US/docs/Web/HTML/Global_attributes
https://developer.mozilla.org/en-US/docs/Web/HTML/Global_attributes
http://schema.org/Place">

Web Scraping Fundamentals12

   Data Science
</div>
<img class="dept" src="logo.png" data-course-id="324"
datatitle="Predictive  Analysis" data-x="12345" data-y="54321"
data-z="56743" onclick="schedule.load()"/>

HTML tags and attributes are very helpful when extracting data.

Important note
Please visit https://www.w3.org or https://www.w3schools.com/html for
more detailed information on HTML.

In Chapter 3, we will explore these attributes using different tools. We will also perform various logical
operations and use them for extracting or scraping purposes.

We now have some idea about HTML and a few important attributes related to HTML. In the next
section, we will learn the basics of XML, also known as the parent of markup languages.

XML

XML is a markup language used for distributing data over the internet, with a set of rules for encoding
documents that are readable and easily exchangeable between machines and documents. XML files
are recognized by the .xml extension.

XML emphasizes the usability of textual data across various formats and systems. XML is designed to
carry portable data or data stored in tags that is not predefined with HTML tags. In XML documents,
tags are created by the document developer or an automated program to describe the content.

The following code displays some example XML content:

<employees>
  <employee>
    <fullName>Shiba Chapagain</fullName>
    <gender>Female</gender>
  </employee>
  <employee>
    <fullName>Aasira Chapagain</fullName>
    <gender>Female</gender>
  </employee>
</employees>

In the preceding code, the <employees> parent node has two <employee> child nodes, which
in turn contain the other child nodes of <fullName> and <gender>.

https://www.w3.org
https://www.w3schools.com/html

Understanding the latest web technologies 13

XML is an open standard, using the Unicode character set. XML is used to share data across various
platforms and has been adopted by various web applications. Many websites use XML data, implementing
its contents with the use of scripting languages and presenting it in HTML or other document formats
for the end user to view.

Extraction tasks from XML documents can also be performed to obtain the contents in the desired
format, or by filtering the requirement with respect to a specific need for data. Plus, behind-the-scenes
data may also be obtained from certain websites only.

Important note
Please visit https://www.w3.org/XML/ and https://www.w3schools.com/
xml/ for more information on XML.

So far, we have explored content placing and content holding related technologies based on markup
languages such as HTML and XML. These technologies are somewhat static in nature. The next section
is about JavaScript, which provides dynamism to the web with the help of scripts.

JavaScript

JavaScript (also known as JS or JScript) is a programming language used to program HTML and
web applications that run in the browser. JavaScript is mostly preferred for adding dynamic features
and providing user-based interaction inside web pages. JavaScript, HTML, and CSS are among the
most-used web technologies, and now they are also used with headless browsers (you can read more
about headless browsers at https://oxylabs.io/blog/what-is-headless-browser).
The client-side availability of the JavaScript engine has also strengthened its usage in application
testing and debugging.

<script> contains programming logic with JavaScript variables, operators, functions, arrays, loops,
conditions, and events, targeting the HTML Document Object Model (DOM). JavaScript code can be
added to HTML using <script>, as seen in the following code, or can also be embedded as a file:

<!DOCTYPE html>
<html>
<head>
   <script>
      function placeTitle() {
         document.getElementById("innerDiv").innerHTML =
            "Welcome to WebScraping";
      }
   </script>
</head>
<body>
   <div>Press the button: <p id="innerDiv"></p></div>

https://www.w3.org/XML/
https://www.w3schools.com/xml/
https://www.w3schools.com/xml/
https://oxylabs.io/blog/what-is-headless-browser

Web Scraping Fundamentals14

   <button id="btnTitle" name="btnTitle" type="submit"
      onclick="placeTitle()">
      Load Page Title!
   </button>
</body>
</html>

As seen in the preceding code, the HTML <head> tag contains <script> with the placeTitle()
JavaScript function. The function defined fires up the event as soon as <button> is clicked and
changes the content for <p> with id=innerDIV (this particular element is defined as empty) to
display the text Welcome to WebScraping.

Important note
The HTML DOM is a standard for how to get, change, add, or delete HTML elements. Please
visit the page on JavaScript HTML DOM on W3Schools (https//www.w3schools.com/
js/js_htmldom.asp) for more detailed information.

The dynamic manipulation of HTML content, elements, attribute values, CSS, and HTML events
with accessible internal functions and programming features makes JavaScript very popular in web
development. There are many web-based technologies related to JavaScript, including JSON, JavaScript
Query (jQuery), AngularJS, and Asynchronous JavaScript and XML (AJAX), among many more.
Some of these will be discussed in the following subsections.

jQuery

jQuery, or more specifically JavaScript-based DOM-related query, is a JavaScript library that addresses
incompatibilities across browsers, providing API features to handle the HTML DOM, events, and
animations. jQuery has been acclaimed globally for providing interactivity to the web and the way
JavaScript is used to code. jQuery is lightweight in comparison to the JavaScript framework. It is also
easy to implement and takes a short and readable coding approach.

jQuery is a huge topic and will require adequate knowledge of JavaScript before embarking on it. A
jQuery-like Python-based library will be used by us in Chapter 4.

Important note
For more information on jQuery, please visit https://www.w3schools.com/jquery/
and http://jquery.com/.

jQuery is mostly used for DOM-based activities, as discussed in this section, whereas AJAX is a
collection of technologies, which we are going to learn about in the next section.

https//www.w3schools.com/js/js_htmldom.asp
https//www.w3schools.com/js/js_htmldom.asp
https://www.w3schools.com/jquery/

Understanding the latest web technologies 15

AJAX

AJAX is a web development technique that uses a group of web technologies on the client side to
create asynchronous web applications.

JavaScript XMLHttpRequest (XHR) objects are used to execute AJAX on web pages and load page
content without refreshing or reloading the page. Please visit the AJAX page on W3Schools (https://
www.w3schools.com/js/js_ajax_intro.asp) for more information on AJAX. From a
scraping point of view, a basic overview of JavaScript functionality will be valuable to understand how
a page is built or manipulated, as well as to identify the dynamic components used.

Important note
Please visit https://developer.mozilla.org/en-US/docs/Web/JavaScript,
https://www.javascript.com/, https://www.w3schools.com/js/js_
intro.asp, and https://www.w3schools.com/js/js_ajax_intro.asp for
more information on JavaScript and AJAX.

We have learned about a few JavaScript-based techniques and technologies that are commonly deployed
in web development today. In the next section, we will learn about data-storing objects.

JSON

JSON is a format used for storing and transporting data from a server to a web page. It is language-
independent and preferred in web-based data interchange actions due to its size and readability. JSON
files are files that have the .json extension.

JSON data is normally formatted as a name:value pair, which is evaluated as a JavaScript object and
follows JavaScript operations. JSON and XML are often compared, as they both carry and exchange
data between various web resources. JSON is usually ranked higher than XML for its structure, which
is simple, readable, self-descriptive, understandable, and easy to process.

For web applications using JavaScript, AJAX, or RESTful services, JSON is preferred over XML due
to its fast and easy operation. JSON and JavaScript objects are interchangeable. JSON is not a markup
language, and it doesn’t contain any tags or attributes. Instead, it is a text-only format that can be
accessed through a server, as well as being able to be managed by any programming language.

JSON objects can also be expressed as arrays, dictionaries, and lists:

{"mymembers":[
{ "firstName":"Aasira",
"lastName":"Chapagain","cityName":"Kathmandu"},
{ "firstName":"Rakshya", "lastName":"Dhungel","cityName":"New Delhi"},
{ "firstName":"Shiba", "lastName":"Paudel","cityName":"Biratnagar"},
]}

https://www.w3schools.com/js/js_ajax_intro.asp
https://www.w3schools.com/js/js_ajax_intro.asp
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://www.javascript.com/
https://www.w3schools.com/js/js_intro.asp
https://www.w3schools.com/js/js_intro.asp
https://www.w3schools.com/js/js_ajax_intro.asp

Web Scraping Fundamentals16

You have learned about JSON, which is a content holder. In the following section, we will discuss
HTML styling using CSS and providing HTML tags with extra identification.

Important note
JSON is also known for the mixture of dictionary and list objects it provides in Python. JSON
is written as a string, and we can find plenty of websites that convert JSON strings into JSON
objects, for example, https://jsonformatter.org/, https://jsonlint.com/,
and https://www.freeformatter.com/json-formatter.html.

Please visit http://www.json.org/, https://jsonlines.org/, and https://
www.w3schools.com/js/js_json_intro.asp for more information regarding
JSON and JSON Lines.

CSS

The web-based technologies we have introduced so far deal with content, including binding, development,
and processing. CSS describes the display properties of HTML elements and the appearance of web
pages. CSS is used for styling and providing the desired appearance and presentation of HTML elements.

By using CSS, developers/designers can control the layout and presentation of a web document. CSS
can be applied to a distinct element in a page, or it can be embedded through a separate document.
Styling details can be described using the <style> tag.

The <style> tag can contain details targeting repeated and various elements in a block. As seen in the
following code, multiple <a> elements exist, and it also possesses the class and id global attributes:

<html>
<head>
<style>
a{color:blue;}
h1{color:black; text-decoration:underline;}
#idOne{color:red;}
.classOne{color:orange;}
</style>
</head>
<body>
<h1> Welcome to Web Scraping </h1>Links:<a href="https://www.google.
com"> Google
 Yahoo
 Wikipedia
</body>
</html>

https://jsonformatter.org/
https://jsonlint.com/
https://www.freeformatter.com/json-formatter.html
http://www.json.org/
https://jsonlines.org/
https://www.w3schools.com/js/js_json_intro.asp
https://www.w3schools.com/js/js_json_intro.asp

Data-finding techniques used in web pages 17

Attributes that are provided with CSS properties or have been styled inside <style> tags in the
preceding code block will result in the output shown in Figure 1.4:

Figure 1.4: Output of the HTML code using CSS

Although CSS is used to manage the appearance of HTML elements, CSS selectors (patterns used to
select elements or the position of elements) often play a major role in the scraping process. We will be
exploring CSS selectors in detail in Chapter 3.

Important note
Please visit https://www.w3.org/Style/CSS/ and https://www.w3schools.
com/css/ for more detailed information on CSS.

In this section, you were introduced to some of the technologies that can be used for web scraping.
In the upcoming section, you will learn about data-finding techniques. Most of them are built with
web technologies you have already been introduced to.

Data-finding techniques used in web pages
To extract data from websites or web pages, we must identify where exactly the data is located. This
is the most important step in the case of automating data collection from the web.

When we browse or request any URL in a web browser, we can see the contents as responses to us.
These contents can be some dynamically added values or dynamically generated or rendered to the
HTML templates by processing some API or JavaScript code. Knowing the URL of response content
or finding the availability of content in some files is the first action toward scraping. Content can also
be retrieved using third-party sources or sometimes even embedded in a view to end users.

In this section, we will explore a few key techniques that will help us identify, search for, and locate
contents we have received via a web browser.

HTML source page

Web browsers are used for client-server-based GUI interaction to explore web content. The browser
address bar is supplied with the web address or URL, the requested URL is communicated to the server
(host), and a response is received, which means it is loaded by the browser. This obtained response or
page source can be further explored and searched for the desired content in raw format.

https://www.w3.org/Style/CSS/
https://www.w3schools.com/css/
https://www.w3schools.com/css/

Web Scraping Fundamentals18

Important note
You are free to choose which web browser you wish to use. Most web browsers will display the
same or similar content. We will be using Google Chrome for most of the book’s examples,
installed on the Windows OS.

To access the HTML source page, follow these steps:

1.	 Open https://www.google.com in your web browser (you can try the same scenario
with any other URL).

2.	 After the page is loaded completely, right-click on any section of the page. The menu shown in
Figure 1.5 should be visible, with the View page source option:

Figure 1.5: View page source (right-click on any page and find this option)

3.	 If you click the View page source option, it will load a new tab in the browser, as seen in Figure 1.6:

https://www.google.com

Data-finding techniques used in web pages 19

Figure 1.6: Page source (new tab loaded in the web browser, with raw HTML)

You can see that a new tab will be added to the browser with the text view-source: prepended to the
original URL, https://www.google.com. Also, if we add the text view-source: to our URL, once
the URL loads, it displays the page source or raw HTML.

Important note
You can try to find any text or DOM element in the web browser by searching inside the page
source. Load the URL https://www.google.com and search web scraping. Find some
of the content displayed by Google using the page source.

We now possess a basic idea of data-finding techniques. The technique we used in this section is a
primary or base concept. There are a few more techniques that are more sophisticated and come with
a large set of functionality and tools, which help or guide us in the data-finding context – we will
cover them in the next section.

Developer tools

DevTools are found embedded within most browsers on the market today. Developers and end users
alike can identify and locate resources and search for web content that is used during client-server
communication, or while engaged in an HTTP request and response.

DevTools allow a user to examine, create, edit, and debug HTML, CSS, and JavaScript. They also
allow us to handle and figure out performance problems. They facilitate the extraction of data that is
dynamically or securely presented by the browser.

https://www.google.com
https://www.google.com

Web Scraping Fundamentals20

DevTools will be used for most data extraction cases. For more detailed information on DevTools,
here are some links:

•	 Google Chrome: https://developer.chrome.com/docs/devtools/

•	 Firefox: https://firefox-source-docs.mozilla.org/devtools-user/

Similar to the View page source option, as discussed in the HTML source page section, we can find
the Inspect menu option, which is another option for viewing the page source, when we right-click
on a web page.

Alternatively, you can access DevTools via the main menu in the browser. Click More tools | Developer
tools, or press Ctrl + Shift + I, as seen in Figure 1.7:

Figure 1.7: Accessing DevTools (web browser menu bar)

Let’s try loading the URL https://en.wikipedia.org/wiki/FIFA in the web browser.
After the page gets loaded, follow these steps:

1.	 Right-click the page and click the Inspect menu option.

We’ll notice a new menu section with tabs (Elements, Console, Sources, Network, Memory,
and more) appearing in the browser, as seen in Figure 1.8:

https://developer.chrome.com/docs/devtools/
https://firefox-source-docs.mozilla.org/devtools-user/
https://en.wikipedia.org/wiki/FIFA

Data-finding techniques used in web pages 21

Figure 1.8: Inspecting the DevTools panels

2.	 Press Ctrl + Shift + I to access the DevTools or click the Network tab from the Inspect menu
option, as shown in Figure 1.9:

Figure 1.9: DevTools Network panel

Important note
The Search and Filter fields, as seen in Figure 1.9, are often used to find content in the HTML
page source or other available resources that are available in the Network panel. The Search
box can be supplied with a regex pattern – case-sensitive information to find or locate content
statically or dynamically.

Web Scraping Fundamentals22

All panels and tools found inside DevTools have a designated role. Let’s get a basic overview of a few
important ones next.

Exploring DevTools

Here is a list of all the panels and tools found in DevTools:

•	 Elements: Displays the HTML content of the page viewed. This is used for viewing and editing
the DOM and CSS, and for finding CSS selectors and XPath content. Figure 1.10 shows the
icon as found in the Inspect menu option, which can be clicked and moved to the HTML
content in the page or code inside the Elements panel, to locate HTML tags or XPath and
DOM element positions:

Figure 1.10: Element inspector or selector

This icon acts similarly to the mouse cursor moving across the screen. We will explore CSS
selectors and XPath further in Chapter 3.

Important note
HTML elements displayed or located in the Elements or Network | Doc panel may not be
available in the page source.

•	 Console: Used to run and interact with JavaScript code, and to view log messages.

•	 Sources: Used to navigate pages and view available scripts and document sources. Script-based
tools are available for tasks such as script execution (that is, resuming and pausing), stepping
over function calls, activating and deactivating breakpoints, and handling exceptions.

•	 Network: Provides us with HTTP request and response-related resources. Resources found
here feature options such as recording data to network logs, capturing screenshots, filtering web
resources (JavaScript, images, documents, and CSS), searching web resources, and grouping
web resources, and can also be used for debugging tasks. Figure 1.11 displays the HTTP request
URL, request method, status code, and more, by accessing the Headers tab from the Doc option
available inside the Network panel.

Data-finding techniques used in web pages 23

Figure 1.11: DevTools – Network | Doc | Headers option (HTTP method and status code)

Network-based requests can also be filtered by the following types:

	� All: Lists all requests related to the network, including document requests, images, fonts,
and CSS. Resources are placed in the order of them being loaded.

	� Fetch/XHR: Lists XHR objects. This option lists dynamically loaded resources, such as API
and AJAX content.

	� JS: Lists JavaScript files involved in the request and response cycle.

	� CSS: Lists all style files.

	� Img: Lists image files and their details.

	� Doc: Lists requested HTML or web-related documents.

	� WS: Lists WebSocket-related entries and their details.

	� Other: Lists any unfiltered type of request-related resources.

Web Scraping Fundamentals24

For each of the filter options just listed, there are some child tabs for selected resources in the
Name panel, which are as follows:

	� Headers: Loads HTTP/HTTPS header data for a particular request. A few important and
automation-based types of data are also found, for example, request URL, method, status
code, request/response headers, query string, payload, or POST information.

	� Preview: Provides a preview of the response found, similar to the entities viewed in the
web browser.

	� Response: Loads the response from particular entities. This tab shows the HTML source
for HTML pages, JavaScript code for JavaScript files, and JSON or CSV data for similar
documents. It actually shows the raw source of the content.

	� Initiator: Provides the initiator links or chains of initiator URLs. It is similar to the referer
in the request headers.

	� Timing: Shows a breakdown of the time between resource scheduling, when the connection
starts, and the request/response.

	� Cookies: Provides cookie-related information, its keys and values, and expiration dates.

Important note
The Network panel is one of the most important resource hubs. We can find/trace plenty of
information and supporting details for each request/response cycle in this panel. For more
detailed information on the Network panel, please visit https://developer.chrome.
com/docs/devtools/network/ and https://firefox-source-docs.mozilla.
org/devtools-user/network_monitor/.

•	 Performance: Screenshots and a memory timeline can be recorded. The visual information
obtained is used to optimize the website speed, improve load times, and analyze the runtime
or overall performance.

•	 Memory: Information obtained from this panel is used to fix memory issues and track down
memory leaks. Overall, the details from the Performance and Memory panels allow developers
to analyze website performance and embark on further planning related to optimization.

•	 Application: The end user can inspect and manage storage for all loaded resources during page
loading. Information related to cookies, sessions, application cache, images, databases on the
fly, and more can be viewed and even deleted to create a fresh session.

•	 Security: This panel might not be available in all web browsers. It normally shows security-
related information, such as resources, certificates, and connections. We can even browse more
about certificate details, from a few detail links or buttons available in this panel, as shown
here in Figure 1.12:

https://developer.chrome.com/docs/devtools/network/
https://developer.chrome.com/docs/devtools/network/
https://firefox-source-docs.mozilla.org/devtools-user/network_monitor/
https://firefox-source-docs.mozilla.org/devtools-user/network_monitor/

Summary 25

 Figure 1.12: Security panel (details about certificate, connection, and resources)

After exploring the HTML page source and DevTools, we now have an idea about where data and
request/response-related information is stored, and how we can access it. Overall, the scraping process
involves extracting data from web pages, and we need to identify or locate the resources with data
or those that can carry data. Before proceeding with data exploration and content identification, it
is beneficial to identify the page URL, DevTools resources, XHR, JavaScript, and a general overview
of browser-based activities.

Finally, there are more topics related to links, child pages, and more. We will be using techniques such
as Sitemaps.xml and robots.txt in depth in Chapter 3.

Important note
For basic concepts related to sitemaps.xml and robots.txt, please visit the Sitemaps
site (https://www.sitemaps.org) and the Robots Exclusion Protocol site (http://
www.robotstxt.org).

In this chapter, you have learned about web scraping, selected web technologies that are involved, and
how data-finding techniques are used.

Summary
Websites are dynamic in nature, so the fundamental activities introduced in this chapter will be
applicable in most cases. We also explained and explored some of the core technologies related to the
World Wide Web (WWW) and web scraping. Identifying or finding content with the use of DevTools
and page sources for targeted content was the focus of this chapter. This information will guide you
through various aspects of taking primary and professional steps in web scraping.

In the next chapter, we will be using the Python programming language to interact with the web or
data sources and explore a few main libraries that we have chosen for data extraction.

https://www.sitemaps.org
http://www.robotstxt.org
http://www.robotstxt.org

Web Scraping Fundamentals26

Further reading
•	 HTML: https://developer.mozilla.org/en-US/docs/Web/HTML

•	 CSV: https://docs.python.org/3/library/csv.html

•	 JSON:

	� https://www.json.org/json-en.html

	� https://developer.mozilla.org/en-US/docs/Learn/JavaScript/
Objects/JSON

•	 XML:

	� https://aws.amazon.com/what-is/xml/

	� https://www.w3.org/XML/

•	 HTTP:

	� https://developer.mozilla.org/en-US/docs/Web/HTTP

	� https://http.dev/methods

	� https://www.rfc-editor.org/rfc/rfc9110.html

•	 JavaScript:

	� https://www.javascript.com/

	� https://developer.mozilla.org/en-US/docs/Web/JavaScript

•	 jQuery:

	� https://jquery.com/

	� https://www.w3schools.com/jquery/default.asp

•	 Browser developer tools:

	� https://developer.chrome.com/docs/devtools/

	� https://developer.mozilla.org/en-US/docs/Learn/Common_questions/
Tools_and_setup/What_are_browser_developer_tools

•	 Web technology: https://developer.mozilla.org/en-US/docs/Web

•	 Reverse engineering: https://insights.globalspec.com/article/7367/
how-does-reverse-engineering-work

https://developer.mozilla.org/en-US/docs/Web/HTML
https://docs.python.org/3/library/csv.html
https://www.json.org/json-en.html
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/JSON
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/JSON
https://aws.amazon.com/what-is/xml/
https://www.w3.org/XML/
https://www.rfc-editor.org/rfc/rfc9110.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://www.w3schools.com/jquery/default.asp
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/Tools_and_setup/What_are_browser_developer_tools
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/Tools_and_setup/What_are_browser_developer_tools
https://developer.mozilla.org/en-US/docs/Web
https://insights.globalspec.com/article/7367/how-does-reverse-engineering-work
https://insights.globalspec.com/article/7367/how-does-reverse-engineering-work

2
Python Programming

for Data and Web

In Chapter 1, you got an idea of what web scraping is, what core technologies exist, and how and where
you can plan to find the resources or data you’re looking for.

Web scraping requires tools and techniques to be implemented and deployed using scripts or programs.
We have chosen Python (https://www.python.org/) for this purpose, as it is very easy to learn
and has a huge set of libraries for communicating with the World Wide Web (WWW), data-related
processes, and finally, web scraping. In internet search results, we often find Python mentioned in
conjunction with data science and Machine Learning (ML). This is because of the wide use of Python
in such projects.

In this chapter, we will explore the key benefits of Python and communicate with web resources using
Python libraries. This chapter will also provide a detailed overview of installing and using Python
libraries such as requests and urllib.

In particular, we will learn about the following topics:

•	 Why Python (for web scraping)?

•	 Accessing the WWW with Python

•	 URL handling and operations

•	 Implementing HTTP methods

Important note
We assume that you have some prior basic understanding and experience in using Python. If
not, then please refer to Python tutorials or training materials from popular sites such as Packt
Publishing (https://www.packtpub.com), W3Schools (https://www.w3schools.
com/python/default.asp), or Python Course (https://www.python-course.
eu), or search the internet for learn python programming to get more such material.

https://www.python.org/
https://www.packtpub.com
https://www.w3schools.com/python/default.asp
https://www.w3schools.com/python/default.asp
https://www.python-course.eu
https://www.python-course.eu

Python Programming for Data and Web28

Technical requirements
We will be using Python 3.11.1 installed on Windows. There are plenty of choices for code editors;
choose one that is convenient for you to use and can deal with the libraries used in this chapter’s code
examples. We will be using Notebooks and JupyterLab from Jupyter (https://jupyter.org/),
Integrated Development and Learning Environment (IDLE) (the default editor from Python), and
Windows’ Command Prompt (cmd) side by side.

To follow along with this chapter, you will need to install the following applications:

•	 Python 3.11.* or the latest version appropriate for your OS from https://www.python.
org/downloads/

•	 The pip Python package management tool (https://pypi.org/project/pip/)

•	 JupyterLab (https://jupyter.org/install) for accessing notebooks or files with
the .ipynb extension

•	 Google Chrome, Mozilla Firefox, or any other web browser equipped with Developer
Tools (DevTools)

•	 JetBrains PyCharm (https://www.jetbrains.com/pycharm/), Visual Studio Code
(https://code.visualstudio.com/), or any editor that you are used to

The Python libraries that are required for this chapter are as follows:

•	 requests

•	 urllib

The code files for this chapter are available online on GitHub: https://github.com/
PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/
tree/main/Chapter02.

Why Python (for web scraping)?
Python is a popular programming language that is used to code various types of applications, from
simple scripts to software development, ML/AI algorithms, and CLI/GUI apps, and also to create web
applications. Python’s simple Object-Oriented Programming (OOP) syntax is very readable, which
allows developers to write code in not many lines and work on different platforms (which means Python
is platform independent), which makes it the number-one choice among programming languages.

Python is a buzzword in today’s programming domain. Quite a lot of tools and web applications are
produced and managed using Python, which is compatible with small and large apps and is supplied
with adequate and up-to-date libraries by its global developer audience.

https://jupyter.org/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://pypi.org/project/pip/
https://jupyter.org/install
https://www.jetbrains.com/pycharm/
https://code.visualstudio.com/
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/tree/main/Chapter02
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/tree/main/Chapter02
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/tree/main/Chapter02

Why Python (for web scraping)? 29

Figure 2.1 (taken from https://www.python.org) shows Success Stories and Use Python
for… information for various types of applications:

Figure 2.1: Python success stories and usage

Important note
Please visit the official Python website at https://www.python.org for updates,
downloads, and more information. Regarding applications for Python, visit https://www.
python.org/about/apps/, and for success stories, visit https://www.python.
org/success-stories/.

In terms of Python usage in the scientific, mathematical, and data domains (data analysis, data science,
data wrangling, big data, and many more), Python is the number-one choice and, as shown in Figure 2.2
(collected from https://www.ideamotive.co/python/guide#what-is-python), it
is also being used by some top global organizations to build products:

Figure 2.2: Python is used for product development on popular websites

Python’s flexibility, from file handling and web applications to database management and dealing
with numerous ML and Natural Language Processing (NLP) concepts in easy steps, has empowered
Python’s development. This growth has also been seen in Python learners, developer groups, and even
global companies using and asking for Python experience and knowledge.

https://www.python.org
https://www.python.org
https://www.python.org/about/apps/
https://www.python.org/about/apps/
https://www.python.org/success-stories/
https://www.python.org/success-stories/
https://www.ideamotive.co/python/guide#what-is-python

Python Programming for Data and Web30

Web scraping requires various tools and techniques to collect data from websites that are fit for the
task for either personal or business needs, but keeping in mind any legal restrictions. With Python,
we can access and manage our projects using a number of effective libraries, such as requests,
http, urllib, json, csv, and cookielib.

Python development, and the Python language itself, is growing and is updated from time to time.
It addresses most market-based demands and helps users to be productive, along with providing
developers with effective and efficient libraries. At the time of writing this book, Python’s version
3.11.1 is available at https://www.python.org, as shown in Figure 2.3:

Figure 2.3: Python website (latest versions, jobs, and documentation)

Python also possesses globally admired libraries for various tasks and domains. These libraries are
famous in the Python community:

•	 requests, http, urllib, cookielib, and Starlette: For HTTP communication

•	 lxml, PyQuery, and BeautifulSoup: For HTML, XML, and DOM parsing

•	 json and csv: For file management and content management

•	 numpy and pandas: For processing and analyzing numerical and tabular data

•	 scipy: For scientific computation

•	 nltk, textblob, and vader: For NLP

•	 PyTorch: An open source ML framework

•	 scikit-learn: Efficient tools for predictive data analysis

•	 matplotlib, seaborn, and plotly: Visualization libraries

•	 PySpark: For handling big data, streaming, and chunk management

•	 FastApi, Flask, and Django: Web-based frameworks

•	 Pydantic and Pandera: Data validation and data testing toolkits

•	 PyArrow: For interoperability and integrating Python objects

https://www.python.org

Accessing the WWW with Python 31

For more detailed information on these libraries, please visit https://www.python.org,
https://pypi.org, and https://pymotw.com/3/.

In this section, you have learned about Python, its popularity, some of its libraries, and the usage of
Python in top companies. In the next section, we will set up Python, install the required libraries, and
use Python for communicating with the web.

Accessing the WWW with Python
As we saw in the Why Python (for web scraping)? section, there are plenty of Python libraries for
interacting with HTTP. requests and urllib are the two libraries that we are interested in
using because of their in-depth features, various functions for dealing with HTTP communication,
easy-to-read documentation, and popularity.

In order to start accessing the WWW with Python using these libraries, let’s verify that we have
installed all of the required resources. In the following subsections, we will start setting things up, such
as installing Python, creating a virtual environment, installing libraries in the created environment,
and accessing the web using Python libraries.

Setting things up

It is assumed that the latest version of Python has been installed on your system. If not, please visit
https://www.python.org/downloads/ for the latest version of Python for your OS.
Regarding the general setup and installation procedure, please visit https://docs.python.
org/3/using/windows.html and follow the detailed steps.

Important note
During installation, Python users can choose Customize Installation and select features such
as Add Python… to PATH. Also, for beginners and intermediate users, it is recommended to
use an easy location or the root folder to set up Python, for example, C:\Python311 or D:\
Python\Py311.

We will be using Python 3.11.1 on Windows. After the installation is complete, we can confirm Python’s
availability in the OS using these steps:

1.	 Press Windows + R to open the Run window and type cmd to load the command-line
interface (CLI).

2.	 Move to your root directory or desired path.

3.	 Type python –h. This will load the Python options, as shown in Figure 2.4:

https://www.python.org
https://pypi.org
https://pymotw.com/3/
https://www.python.org/downloads/
https://docs.python.org/3/using/windows.html
https://docs.python.org/3/using/windows.html

Python Programming for Data and Web32

Figure 2.4: CMD window (listing Python command-line options with python -h)

4.	 As shown in Figure 2.5, the -V or —version option provides us with the available Python version:

Figure 2.5: Terminal window (showing Python version)

In addition to these steps, we can access the Python version using the Start menu or by pressing the
Windows button, navigating to the menu option, and opening or loading Python’s IDLE. Upon loading
IDLE, it will show us the Python version in its title bar and also in the editor window (in the first line),
or we can access version information using code, as shown in Figure 2.6:

Figure 2.6: Python IDLE showing the Python version and some extra information

Accessing the WWW with Python 33

In Figure 2.6, we have imported the sys library (also known as system), and sys has an attribute
named version that displays the current Python version along with some system information. For
more information on sys and IDLE, please visit https://docs.python.org/3/library/
sys.html and https://docs.python.org/3/library/idle.html, respectively.

The default Python setup installs most of the internal or default libraries (sys, urllib, os, math, and
more), but if we want libraries that are not available, the system throws a ModuleNotFoundError
error, as shown in Figure 2.7:

Figure 2.7: ModuleNotFoundError encountered when importing the requests library

Cases similar to Figure 2.7 will require additional installation of such libraries, which can be handled
using pip.

So far, Python has been installed, and we have verified the installation using the CLI and Python’s
Graphical User Interface (GUI), IDLE. To set up additional libraries, such as requests, we first
have to take some additional steps, which we are going to cover in the next section.

Creating a virtual environment

Before proceeding with the installation of the required libraries or additional libraries that are not
available by default with Python, it is recommended to create a virtual environment for your project.

A virtual environment maintains a directory for a project and its required libraries so that no conflict
between libraries and the system can happen. It normally provides a complete environment for
targeted projects with their particular requirements and specifications. For more information on
virtual environments, please visit https://docs.python.org/3/tutorial/venv.html
or https://docs.python-guide.org/dev/virtualenvs/.

https://docs.python.org/3/library/sys.html
https://docs.python.org/3/library/sys.html
https://docs.python.org/3/library/idle.html
https://docs.python.org/3/tutorial/venv.html
https://docs.python-guide.org/dev/virtualenvs/

Python Programming for Data and Web34

We will install all the required libraries and tools for our book in a virtual environment. So, let’s begin
by creating the environment, and we will load it with the required libraries using pip by following
these steps:

1.	 Create a directory first, for example, HOWScraping2E (this is where we want all of our code
in the book to be placed) in the root drive (C:\HOWScraping2E>).

2.	 In HOWScraping2E, run the following command:

C:\HOWScraping2E>python -m venv secondEd

Here we have created a virtual environment named secondEd using venv.

This step also creates a directory named secondEd inside the HOWScraping2E directory,
with a few more folders.

3.	 To activate the environment (secondEd) we have created, run the activate command
using secondEd\Scripts, as shown in Figure 2.8:

Figure 2.8: Activating the virtual environment

The virtual environment has been successfully activated, as the secondEd environment is
visible at the start of the command prompt, as shown in Figure 2.8.

4.	 To deactivate or close the environment, we can just issue the deactivate command, for
example, (secondEd) C:\HOWScraping2E> deactivate. It is advisable to deactivate
the environment at the end or before closing the system.

Now that the location and environment are ready, we need to install the required libraries and tools
using pip. The pip package management system is used to install and manage software packages
written in Python. For more information, please visit https://pypi.org/project/pip/
and https://packaging.python.org/en/latest/tutorials/installing-
packages/.

Let’s get some information on the version of pip that we are going to use, along with the path of pip
in our virtual environment, as shown in Figure 2.9:

Figure 2.9: pip location and version, and Python version

https://pypi.org/project/pip/
https://packaging.python.org/en/latest/tutorials/installing-packages/
https://packaging.python.org/en/latest/tutorials/installing-packages/

Accessing the WWW with Python 35

Important note
Normally, the lib folder contains libraries from the default Python installation in the system,
and external libraries are found inside site-packages. As shown in Figure 2.9, we now
have lib and site-packages inside our virtual environment, and in a project-specific
or dedicated folder. Therefore, any library installations or updates will occur inside our
targeted environment.

If you prefer using Anaconda, refer to https://docs.anaconda.com/free/navigator/
tutorials/manage-environments/ and https://conda.io/projects/
conda/en/latest/user-guide/tasks/manage-environments.html.

So far, our environment is ready and working. We have verified that pip exists in our system. In the
next section, we will install the libraries we need.

Installing libraries

In this section, we will install some libraries in our environment, such as requests, jupyterlab,
and a few others as required.

Python notebooks are now in high demand – they provide easy visibility of code and a lot of control
over input and output. In addition, the export feature is very useful to export code for presentations or
explanations. Let’s install JupyterLab (https://jupyter.org) so we can use Python notebooks
(.ipynb files). We can use pip install as shown in the following command to install JupyterLab:

(secondEd) C:\HOWScraping2E> pip install jupyterlab

After successfully installing JupyterLab, let’s run it and check the availability of other libraries (many
dependent libraries get installed during the setup of JupyterLab). To load jupyterlab, use the
following command:

(secondEd) C:\HOWScraping2E>jupyter-lab

https://docs.anaconda.com/free/navigator/tutorials/manage-environments/
https://docs.anaconda.com/free/navigator/tutorials/manage-environments/
https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html
https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html
https://jupyter.org

Python Programming for Data and Web36

This will open a new window pointing to http://localhost:8888/lab in your default browser,
as shown in Figure 2.10:

Figure 2.10: JupyterLab (the default window in Google Chrome)

Important note
For more information on using Python notebooks and JupyterLab, please visit https://
docs.jupyter.org/en/latest/. In addition, you can create a notebook and check
whether you need to install other libraries too – if they are missing, we can install them from
the notebook itself (using !pip install requests).

Our decision to install and use JupyterLab is quite convenient because major libraries such as requests
are automatically installed and available to us. As shown in Figure 2.7, the requests library is not
available with the default Python installation. Let’s verify that our other required libraries are working
fine; use them or import them in a notebook, as shown in Figure 2.11 (the code is available in the
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-
Second-Edition/blob/main/Chapter02/test_install_libraries.ipynb file):

https://docs.jupyter.org/en/latest/
https://docs.jupyter.org/en/latest/
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/blob/main/Chapter02/test_install_libraries.ipynb
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/blob/main/Chapter02/test_install_libraries.ipynb

Accessing the WWW with Python 37

Figure 2.11: Verifying the requests and urllib libraries

If you do not wish to use JupyterLab, you can set up the libraries from the terminal using the
following code:

(secondEd) C:\HOWScraping2E> pip install requests

Now, our environment is set up and the required libraries are in our system. We will use these libraries
to communicate with URLs (send requests to the web and collect responses) in the next section.

Loading URLs

Loading URLs generally involves HTTP communication, such as sending requests to the server and
receiving responses from the server. The upcoming URL handling and operations and Implementing
HTTP methods sections in this chapter will explore these topics in more detail. Data extraction
activities will be covered in Chapter 3.

Important note
Before loading URLs using Python, it’s also advisable to verify that the URLs are working
properly and contain the data that we are looking for. This basic feasibility lookup will save
many resources while running and managing our projects.

Python Programming for Data and Web38

Let’s load two different URLs, one using urllib and another using requests:

•	 Task 1: Load https://www.python.org using urllib. We are using code in a notebook,
as shown in Figure 2.12:

Figure 2.12: Import request from urllib

urllib has many submodules, such as request, response, parse, and error.
To send requests to https://www.python.org or load a URL, we need to import
requests and execute the urlopen() method with the URL as a parameter, which returns
the HTTPResponse object, as shown in Figure 2.13:

Figure 2.13: Reading the URL and the HTTPResponse object

We need to read the object’s content using the read() method and display the page source
or HTML content received from the website, as shown in Figure 2.14:

Figure 2.14: Displaying content by executing read() on the HTTPResponse object

•	 Task 2: Load https://pypi.org/project/pycurl/ using requests. As shown in
Figure 2.15, we have defined the URL to be processed and imported the requests library.
The get() method from requests loads the URL as a parameter, along with the content
attribute, and returns the response:

https://www.python.org
https://www.python.org
https://pypi.org/project/pycurl/

URL handling and operations 39

Figure 2.15: Displaying content using requests

After both of these tasks, it looks like requests has some simple and short methods for dealing with
URLs. The code for these tasks is available at https://github.com/PacktPublishing/
Hands-On-Web-Scraping-with-Python-Second-Edition/blob/main/Chapter02/
loading_url.ipynb.

Important note
There are plenty of WWW or HTTP libraries in Python. Among them, requests (https://
requests.readthedocs.io/en/latest/) (with the tagline HTTP for Humans) has
attained a certain prestige. Its performance has been recognized by developers and organizations
globally. It has simple, elegant, and precise methods, thanks to urllib3 (https://github.
com/urllib3/urllib3).

We will discuss and use both libraries in the next section and the upcoming chapters. We have now
installed and verified the required libraries and a few system-related requirements, such as appropriate
versions of libraries. In the next section, we will explore various URL- and HTTP-based activities
and operations that are essential before we dig deeper into scraping using the requests library.

URL handling and operations
In this section, we will explore the operations that are required when handling URLs. In the browser,
we input a URL as a request and receive an output or a response, but plenty of operations take place
behind the scenes, and we can view these operations using browser-based DevTools.

We mentioned DevTools in the Developer tools section in Chapter 1, when we discussed the role of
certain panels, such as the Network panel, found in DevTools. As we are diving deep into using libraries
for HTTP-based communication and creating or dealing with code, it is quite important to deal with or
monitor the HTTP information found in the Network panel while accessing the URL in the browser.

The information found in the different sections of the Network panel, such as Request URL, Request
Headers, Request Method, Response Headers, Status Code, and Cookies, are important in the
sense that we as developers are trying to automate, verify, inject, or use that information in our code.

https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/blob/main/Chapter02/loading_url.ipynb
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/blob/main/Chapter02/loading_url.ipynb
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/blob/main/Chapter02/loading_url.ipynb
https://requests.readthedocs.io/en/latest/
https://requests.readthedocs.io/en/latest/
https://github.com/urllib3/urllib3
https://github.com/urllib3/urllib3

Python Programming for Data and Web40

Here is the information available in DevTools that can be used in our code:

•	 Request URL: We might find hidden or redirected URLs, APIs with the desired contents, or
other URLs that are easier to process.

•	 Request Headers: Information sent by the browser to the server during request processing,
for example, cookies, user-agent, referer, and pragma.

•	 Response Headers: Information that the server exchanges with the browser during the response,
for example, server information, content/types, and etags.

•	 Cookies: Security, permissions, or session content in key-value pairs with expiration dates and
times. The priority of cookies determines the complexity of the HTTP-based communication cycles.

•	 Status Code: Information about HTTP responses, whether they are client, server, or resource issues.

•	 Request Method: HTTP methods (GET/POST) being used when sending requests or
receiving responses.

Developers might also encounter situations where URL manipulation is required (altered or cleaning,
for example). There might be some hidden URLs, APIs, or even static content with data that we require
that is not visible directly through web browsers.

After all, we are developing crawlers or Python scripts to automate our browser-based activities.
Hence, we need to fully understand the DevTools and develop crawlers that can perform similarly to
the browser with some additional tasks, such as extracting data. For this purpose, we need to manage
and handle the URLs and HTTP communication, which we will cover in the upcoming sections.

Important note
DevTools shows us the complete communication logs during the requests and responses from
the server or other third parties. Please check out the Developer tools section of Chapter 1 for
more information, or check out these URLs: https://developer.chrome.com/docs/
devtools/ and https://firefox-source-docs.mozilla.org/devtools-
user/.

requests – Python library

requests, an HTTP-based Python library released in 2011, is still one of the most renowned
libraries among developers. It is an elegant and simple HTTP library for Python, written in natural
language (https://requests.readthedocs.io/en/latest/), as shown in Figure 2.16:

https://developer.chrome.com/docs/devtools/
https://developer.chrome.com/docs/devtools/
https://firefox-source-docs.mozilla.org/devtools-user/
https://firefox-source-docs.mozilla.org/devtools-user/
https://requests.readthedocs.io/en/latest/

URL handling and operations 41

Figure 2.16: requests library – HTTP for Humans

We took a look at requests in the Installing libraries section. For our purposes, we are using
requests version 2.28.1.

Compared to other HTTP libraries in Python, requests is highly rated because of its readable,
developer-friendly, and simple-to-use attributes. Some of its main qualities are as follows:

•	 Short, simple, and readable functions and attributes

•	 Access to various HTTP methods

•	 Automatic content decoding and decompression

•	 Easy processing of query strings

•	 Customization of HTTP headers

•	 Session and cookie processing

•	 Ability to deal with JSON requests and content

•	 Proxy support

•	 Multipart file uploads (form handling)

•	 Connection pooling and timeouts

We will be using the requests library, and we’ll explore some of its main properties. In the Loading
URLs section, we used the get() method to load a URL and view its source using content. We
were actually using the HTTP GET method to communicate with the URL using get().

The requests library also supports other HTTP methods, such as PUT, POST, DELETE, HEAD, and
OPTIONS, using the put(), post(), delete(), head(), and options() methods, respectively.

With this brief introduction and overview of requests, we will cover some more details with code
examples in the following sections.

Python Programming for Data and Web42

General usage

Let’s explore some of the key features of the requests library with some examples, as shown in
Figure 2.17. The code is available at https://github.com/PacktPublishing/Hands-
On-Web-Scraping-with-Python-Second-Edition/blob/main/Chapter02/
requests.ipynb:

Figure 2.17: Using get() and showing the response type and status code

Important note
We recommend using dir(requests) and dir(response), or using dir() whenever
a new object is found in the code. This will show detailed information about that object and
will even help you to decide which features to use.

As shown in Figure 2.17, we have imported requests and loaded the URL defined in link.
response is typically an object of requests.models.Response, and it shows the HTTP
status code too, which is 200.

As shown in Figure 2.18, to get the actual status code, we can use the status_code attribute:

https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/blob/main/Chapter02/requests.ipynb
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/blob/main/Chapter02/requests.ipynb
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/blob/main/Chapter02/requests.ipynb

URL handling and operations 43

Figure 2.18: Using requests with status_code, url, and history

In addition, response.url shows you the final URL after the HTTP communication is complete.
We can see that the value of response.url is different from that of link (as shown in Figure 2.17)
– if this is true, then there must have been some redirection, which is confirmed by the status code
received from history (302 indicates a temporary redirect).

Encoding is also an important factor; we can get some information on encoding, as shown in Figure 2.19:

Figure 2.19: The encoding attribute of a response returning the encoding value

Here, we have explored some basic usage of requests with the help of a few code examples. In the
next section, we will explore HTTP headers.

Request/response headers

As mentioned in the introduction of the URL handling and operations section, HTTP headers are
quite significant to developers; HTTP headers shared by servers and clients can differ for requests
and responses. Some examples are shown in Figure 2.20:

Python Programming for Data and Web44

Figure 2.20: Headers (from both responses and requests)

response.request.headers returns the headers during HTTP requests, while response.
headers returns headers during HTTP responses. Both headers are available as dictionaries, and we
can use the values to set and update the required key-value pair of the dictionaries while processing
scraping scripts.

It’s sometimes compulsory with crawler scripts for headers such as User-Agent, Accept,
Referer, and Cookies to be set and passed while making HTTP requests. In the next section,
we will explore cookies.

Cookies/session

HTTP cookies are data sent by the server to the browser. Cookies are data that is generated and
stored by websites on the user’s system or computer. Data stored in cookies helps to identify HTTP
requests from the user to the website. Cookies contain information regarding session management,
user preferences, and user behavior. Many websites ask for permission to set cookies while you’re
browsing the web.

As shown in Figure 2.21, cookies is returned as an object of RequestCookieJar:

Figure 2.21: Cookies obtained as an object of RequestCookieJar

URL handling and operations 45

Our earlier response from https://requests.readthedocs.io, as shown in Figure 2.17, did
not have any cookies as it returns an empty object, so we loaded new URL requests with https://
github.com/anishchapagain and obtained cookies from the response_github variable.

We can create a loop on response_github.cookies and collect or inspect details or values
from the cookies, such as domain, key, value, expires, secure, path, and port, as shown
in Figure 2.22:

Figure 2.22: Looping on response_github.cookies (domain, name, and value)

In addition, we can pass cookies while making HTTP requests, and even set cookies in the
RequestCookieJar object and forward them to the server or website while making HTTP
requests. These steps are to be handled carefully and during required cases only (for example, when
the pages are loaded with some cookie values, such as token and ID. If there are tokens when visiting
a page, then those values are also required for the scraping script. This is why we collect cookies from
the targeted site). Some examples of cookie-related code are shown in Figure 2.23:

Figure 2.23: Setting up cookies and passing them to the HTTP request

Important note
For more information on cookies, please visit https://www.aboutcookies.org/
and https://www.allaboutcookies.org.

https://requests.readthedocs.io
https://github.com/anishchapagain
https://github.com/anishchapagain
https://www.aboutcookies.org/
https://www.allaboutcookies.org

Python Programming for Data and Web46

The server identifies the cookies’ values and communicates with the browser based on the information
that is stored in the cookies. Data in cookies helps a website access and transfer values such as session
ID, expiration date, and the time the cookie information was stored.

A session or web session is normally identified as information stored in the server (temporarily), and
it persists throughout the user’s interaction with the site.

As shown in Figure 2.24, a session is often related to a user’s credentials on a website:

Figure 2.24: HTTP requests with requests.Session() objects

Important note
During an HTTP request, it is important that header, cookies, and session values
obtained from DevTools or code output are monitored and updated or replaced with values
such as proxy and header/cookie keys frequently. While running the scraping script, using these
updated values and keys will help you bypass server exceptions and detect bots. Visit https://
requests.readthedocs.io/en/latest/user/advanced/#advanced for more
information on sessions and proxies.

You now have a basic idea of HTTP request attributes, such as cookies, headers, sessions, and methods.
In the next section, we will focus on the contents of URLs or, more appropriately, HTTP responses.

Response content

We can receive pages or responses, or the page source of the requested URL, using the content
attribute in bytes, whereas the text attribute returns a string object, as displayed in Figure 2.25:

https://requests.readthedocs.io/en/latest/user/advanced/#advanced
https://requests.readthedocs.io/en/latest/user/advanced/#advanced

URL handling and operations 47

Figure 2.25: Response (content and text)

Furthermore, requests also returns a raw socket response, as shown in Figure 2.26. We can get
our response using the stream argument with get():

Figure 2.26: Raw socket response, stream=True and read()

A raw response is bytes of characters that have not been transformed or decoded automatically.

After receiving a response or page content, most of the time it is quite useful to save it in a local file.
This is done so we can study the content to reveal the code format, determine the DOM tree structure,
or find elements. This is shown in Figure 2.27, and we have named this local file test.html:

Figure 2.27: Writing response.content to an external file

We now have responses, and they are available in a local HTML file. This file can be used to analyze
the DOM structure, find query-related patterns, and many more things. We find different kinds
of HTTP responses (JSON, PDF, HTML, and XML), and the next section will help us to deal with
JSON responses.

Python Programming for Data and Web48

Reading JSON

requests handles JSON very effectively with its built-in decoder. You can see the use of json()
in Figure 2.28:

Figure 2.28: Loading and reading JSON content

Web scraping and crawling tasks might use any of the previously mentioned processes (HTTP headers,
obtaining cookie information, status codes, or saving response content to local files) for HTTP
communication and collecting or validating content. Most of the time, the methods and attributes
provided by Python libraries make things convenient and easy. This is for the following reasons:

•	 A few logical steps (such as looping with conditions) found in some libraries are written as
short snippets of code; these snippets serve specific purposes right where they are needed and
are found wrapped up as functions, which are more convenient to use than procedural coding.

•	 Most of the new libraries overcome limitations and logical restrictions by embedding and
wrapping up one or more functions, as new features that exist in old libraries are managed by
the latest libraries.

•	 There might also be extra features in some functions inside new libraries that are lengthy and
troublesome to manage. In such cases, developers choose to use old libraries.

In the next section, we will be using requests to implement the HTTP GET and POST methods.

Implementing HTTP methods
Generally, web-based interaction or communication between websites and users is achieved as follows:

1.	 The user accesses a web page or navigates through the content that is available to them.

2.	 The user then submits information to the website through an HTML form, by searching,
logging in, registering themselves, and so on, and finally receiving the content they asked for.

In this section, we will be using the Python requests library to implement HTTP methods fitting
the scenarios we just listed.

Implementing HTTP methods 49

GET

The HTTP GET method is the default HTTP method. If no HTTP method is defined, then GET will
be used by the code. We used some code earlier in this chapter that used GET. We were using the GET
method unknowingly and without declaring it in the code.

By using GET, the resource’s state is not altered, so it is the default and safest method. GET parameters,
also known as query strings, are visible in the URL. They are appended to the domain name or path
using ?, and are available as key-value pairs. Such URLs can be easily cached and bookmarked. Here
are a few examples:

•	 https://www.python.org

•	 https://requests.readthedocs.io/en/latest/user/quickstart/

•	 https://www.amazon.com/Hands-Web-Scraping-Python-operations/
product-reviews/1789533392/ref=cm_cr_othr_d_show_all_
btm?ie=UTF8&reviewerType=all_reviews

The get() method from requests uses the HTTP GET method for communication and also
accepts a few (not compulsory) arguments:

•	 params: Query string

•	 headers: HTTP request headers

•	 link: URL to access

•	 cookies: Some key-value pairs

•	 proxies: Demo IPs that will work for you

•	 timeout: The amount of time in seconds that the request will wait for the client to establish
the connection

Finally, GET requests are created with some of these defined arguments, as shown in Figure 2.29:

Figure 2.29: HTTP GET request with various arguments supplied

https://www.python.org
https://requests.readthedocs.io/en/latest/user/quickstart/
https://www.amazon.com/Hands-Web-Scraping-Python-operations/product-reviews/1789533392/ref=cm_cr_othr_d_show_all_btm?ie=UTF8&reviewerType=all_reviews
https://www.amazon.com/Hands-Web-Scraping-Python-operations/product-reviews/1789533392/ref=cm_cr_othr_d_show_all_btm?ie=UTF8&reviewerType=all_reviews
https://www.amazon.com/Hands-Web-Scraping-Python-operations/product-reviews/1789533392/ref=cm_cr_othr_d_show_all_btm?ie=UTF8&reviewerType=all_reviews

Python Programming for Data and Web50

GET is the default HTTP method. Similarly, we have POST, which is a bit stricter and is explained
in the next section.

POST

POST requests are known as secure requests that are made to the source or server. The requested
resource’s state might be altered too. Data that’s posted or sent to the requested URL is not visible in the
browser (unlike GET query strings); instead, it’s transferred to the requested body. Requests with the
POST method cannot be cached or bookmarked and have no restrictions in terms of character length.

In the example code, as shown in Figure 2.30, the https://httpbin.org/post URL (a simple
HTTP request and response service) has been used to demo a POST request:

Figure 2.30: HTTP POST request

pageUrl accepts data to be posted, as defined in params, to postUrl. Custom headers are assigned
to headers. The post() function accepts a few arguments: the URL, for example, postUrl, data
(the data to be posted), and headers, and returns a response in JSON format.

The POST request code in Figure 2.30 automates params and headers (partially) with the required
URLs as though we were submitting the actual HTML form on http://httpbin.org/forms/
post and posting it to http://httpbin.org/post from the browser.

You can perform the same task manually from the browser – open DevTools and verify the parameters
or Payload being used in the Network panel, as shown in Figure 2.31:

https://httpbin.org/post
http://httpbin.org/forms/post
http://httpbin.org/forms/post
http://httpbin.org/post

Implementing HTTP methods 51

Figure 2.31: Payload with form data (an actual params key-value pair used in code)

As shown in Figure 2.31, the form data is similar to params in Figure 2.30. It is always recommended to
learn, note, and detect the request/response sequences for any sites through the browser and DevTools.

We can get plenty of information from DevTools that can be used to deploy scripts and automate
the process. In the current scenario, Figure 2.32 displays the maximum amount of information from
Headers in the General and Request Headers sections:

Figure 2.32: Request URL, method, and headers used in the HTTP POST request

Python Programming for Data and Web52

The example and figures in this section relate to what the HTTP POST method does, as well as how
POST and the parameters provided to POST differ in comparison to the GET method. Implementing the
HTTP method is the core aspect of HTTP activities. For more detailed information on HTTP methods,
please visit https://requests.readthedocs.io/en/latest/api/ and https://
www.w3schools.com/tags/ref_httpmethods.asp.

Summary
In this chapter, we have learned about Python programming, setting up a virtual environment,
and installing Python libraries to send requests to web resources and collect responses and some
additional information.

The main objective of this chapter was to demonstrate the core features of the requests library.
Our primary aims were to learn how to deal with the HTTP request and response cycle, how to use
HTTP methods (with extra parameters), how to use DevTools, and what the benefits are of using
Python in this domain.

In the next chapter, we will learn and use some essential techniques to identify and extract data from
web content.

Further reading
•	 Python programming:

	� https://www.python.org/doc/

	� https://www.w3schools.com/python/default.asp

•	 Data and data analysis:

	� https://www.diesel-plus.com/the-importance-of-data-collection-
10-reasons-why-data-is-so-important/

	� https://www.simplilearn.com/data-analysis-methods-process-
types-article

	� https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8274472/

	� https://scientific-publishing.webshop.elsevier.com/research-
process/when-data-speak-listen-importance-of-data-collection-
and-analysis-methods/

https://requests.readthedocs.io/en/latest/api/
https://www.w3schools.com/tags/ref_httpmethods.asp
https://www.w3schools.com/tags/ref_httpmethods.asp
https://www.python.org/doc/
https://www.w3schools.com/python/default.asp
https://www.diesel-plus.com/the-importance-of-data-collection-10-reasons-why-data-is-so-important/
https://www.diesel-plus.com/the-importance-of-data-collection-10-reasons-why-data-is-so-important/
https://www.simplilearn.com/data-analysis-methods-process-types-article
https://www.simplilearn.com/data-analysis-methods-process-types-article
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8274472/
https://scientific-publishing.webshop.elsevier.com/research-process/when-data-speak-listen-importance-of-data-collection-and-analysis-methods/
https://scientific-publishing.webshop.elsevier.com/research-process/when-data-speak-listen-importance-of-data-collection-and-analysis-methods/
https://scientific-publishing.webshop.elsevier.com/research-process/when-data-speak-listen-importance-of-data-collection-and-analysis-methods/

Further reading 53

•	 requests, urllib, JSON:

	� https://requests.readthedocs.io/en/latest/

	� https://pymotw.com/3/

•	 Virtual environment:

	� https://docs.python.org/3/library/venv.html

	� https://docs.python-guide.org/dev/virtualenvs/

	� https://conda.io/projects/conda/en/latest/user-guide/tasks/
manage-environments.html

	� https://docs.anaconda.com/free/navigator/tutorials/manage-
environments/

•	 Jupyter Notebooks:

	� https://jupyter.org/

	� https://code.visualstudio.com/docs/datascience/jupyter-notebooks

•	 Cookies:

	� https://www.cloudflare.com/en-gb/learning/privacy/what-are-
cookies/

	� https://www.cookieyes.com/blog/session-cookies/

•	 URL and HTTP:

	� https://blog.hubspot.com/marketing/parts-url

	� https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview

https://requests.readthedocs.io/en/latest/
https://pymotw.com/3/
https://docs.python.org/3/library/venv.html
https://docs.python-guide.org/dev/virtualenvs/
https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html
https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html
https://docs.anaconda.com/free/navigator/tutorials/manage-environments/
https://docs.anaconda.com/free/navigator/tutorials/manage-environments/
https://jupyter.org/
https://code.visualstudio.com/docs/datascience/jupyter-notebooks
https://www.cloudflare.com/en-gb/learning/privacy/what-are-cookies/
https://www.cloudflare.com/en-gb/learning/privacy/what-are-cookies/
https://www.cookieyes.com/blog/session-cookies/
https://blog.hubspot.com/marketing/parts-url
https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview

Part 2:
Beginning Web Scraping

In this part, you will learn how to analyze, plan, and process a collection of desired or required data
from a target website, collecting or writing the data to the desired file format. You will code a scraper
using Python and its selected libraries. The chapters in this part will introduce various aspects of
scraping practices that can be done effectively and efficiently.

This part contains the following chapters:

•	 Chapter 3, Searching and Processing Web Documents

•	 Chapter 4, Scraping Using PyQuery, a jQuery-Like Library for Python

•	 Chapter 5, Scraping the Web with Scrapy and Beautiful Soup

3
Searching and

Processing Web Documents

So far, we have learned about web scraping, data-finding techniques, and related technologies that
help us with scraping, and we’ve identified a few reasons to select the Python programming language.

Web- or website-based content exists as HTML elements or as a predefined document or some kind
of object (JSON). For extraction purposes, we need to analyze and identify such content, patterns,
and objects. HTML-based elements are generally identified with XML Path (XPath) and Cascading
Style Sheets (CSS) selectors, which are traversed and processed with scraping logic for the desired
content. The lxml library will be used in this chapter to process markup documents. We will be
using browser-based Developer Tools (DevTools) for finding content and element identification.

In particular, we will learn about the following topics in this chapter:

•	 Introducing XPath and CSS selectors to process markup documents

•	 Using web browser DevTools to access web content

•	 Scraping using lxml – a Python library

•	 Parsing robots.txt and sitemap.xml

Technical requirements
The Google Chrome or Mozilla Firefox web browser will be required and we will be using Python
notebooks with JupyterLab.

Please refer to the Setting things up and Creating a virtual environment sections of Chapter 2 and
continue using the environment we created.

Searching and Processing Web Documents58

The Python libraries that are required for this chapter are as follows:

•	 lxml

•	 urllib

The code files for this chapter are available online on GitHub: https://github.com/
PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/
tree/main/Chapter03.

Important note
Web- or website-based content refers to the responses or page sources that are received after
processing requests to a URL. Content can be of various types, such as PDF, CSV, TXT, XML,
HTML, and JSON. In general, in this chapter, we are talking about HTML, page source, or
markup documents as our primary content, unless stated otherwise.

Introducing XPath and CSS selectors to process markup
documents
In the Understanding the latest web technologies and Data-finding techniques used in web pages sections
in Chapter 1, we explored and discussed HTML and XML markup documents and their availability
across the web.

Normally, markup is a kind of labeling or tagging of parts, sections, or any entities in documents,
which helps to identify the content and even process it using a third-party application. We call them
tags in HTML (https://www.w3.org/html/) and nodes in XML (https://www.w3.org/
standards/xml/). Hence, markup documents are a tree-like structure, containing tags or nodes
(nested or individual), also known as an element tree.

Important note
XML documents have been pretty popular and common across the web since the start of the
growing internet era. Readability, encoding support, interoperability, and data exchangeability
are a few core powers of XML. XML is still supported by the latest web technologies and is the
utmost backbone of markup documents.

With the brief overview of markup and XML we have received here, the next sections will introduce
the Document Object Model (DOM), XPath, and CSS selectors and using them for web scraping
purposes with the help of a Python library.

https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/tree/main/Chapter03
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/tree/main/Chapter03
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/tree/main/Chapter03
https://www.w3.org/html/
https://www.w3.org/standards/xml/
https://www.w3.org/standards/xml/

Introducing XPath and CSS selectors to process markup documents 59

The Document Object Model (DOM)

A tree-type structure or an element tree is a base model for most markup languages and is often
known as the DOM. Please visit these links for more details on the DOM: https://www.w3.org/
TR/WD-DOM/introduction.html and https://developer.mozilla.org/en-US/
docs/Web/API/Document_Object_Model.

DOM processing, DOM parsing, DOM manipulation, and many more similar terms refer to activities
related to the DOM. With the help of the DOM and its defined conventions, we can access, traverse,
and manipulate markup documents. Plenty of web-related technologies support DOM usage, such
as JavaScript (JS), template engines, and web page development tools.

DOM elements (tags or nodes) are predefined or user-defined most of the time. We can find open
and closed types of conventions used in markup documents. Elements are structured or nested inside
parent elements and might be the parent or child of some other elements too. This tree-like structure
made up of DOM elements is based on a language or convention and can be used to build markup
documents, as seen in Figure 3.1:

Figure 3.1: HTML DOM tree structure

Understanding the DOM or element tree (HTML tree or XML tree) is a basic step toward understanding
the document as a container of elements and following the extraction process. Information can be
found nested inside a tree structure and could possess additional information along with attributes
representing the content. Refer to the HTML section of Chapter 1 for more details.

XPath and CSS selectors are used to navigate along the DOM and are used to search for the desired
content in nodes or elements found. We will explore XPath in the next section.

https://www.w3.org/TR/WD-DOM/introduction.html
https://www.w3.org/TR/WD-DOM/introduction.html
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model

Searching and Processing Web Documents60

XPath

The XPath language is a part of XML-based technologies such as XML, XSLT, and XML Query
(XQuery). XPath (https://www.w3.org/TR/xpath/) deals with navigating through DOM
elements and locating nodes in XML (elements or tags in HTML) documents using expressions, known
as XPath expressions. XPath is like a path (expressions are built using and representing HTML elements
and XML nodes) that identifies nodes in documents. XPath is also a World Wide Web Consortium
(W3C) (https://www.w3.org) recommendation.

With XPath expressions, we can navigate hierarchically through elements and reach the targeted ones.
XPath is also supported and implemented by various programming languages, such as JS, PHP, Java,
Python, and C++. Web browsers and applications also have built-in support for XPath.

XPath expressions are also identified as absolute and relative:

•	 Absolute path: This expression represents a complete path from the root element to the desired
or targeted element. In an HTML document, it begins with /html and looks like /html/
body/div[1]/div/div[2]/div/span/p[1]. Individual elements, such as div and
p, are generally identified by their position and represented by an index number, such as [1]
or [2].

•	 Relative path: This expression is somewhat shorter and more readable in comparison with an
absolute path and is often preferred over absolute expressions. It begins with certain chosen or
selected elements and ends with the desired element, for example, //*[@id="answer"]/
div/span/p[@class="text"].

While an absolute path traces all nodes in an element tree, a relative path uses the help of elements’
attributes (name-value pair), as we saw in the HTML elements and attributes section of Chapter 1.

XPath is also a core block of XML technologies, such as XQuery and eXtensible Stylesheet Language
Transformations (XSLT). An XPath expression can be built using a number of built-in functions
available for various data types. XPath expressions can contain code patterns, functions, and conditional
statements, and also support the use of predicates.

Important note
XQuery is a query language that uses XPath expressions to extract data from XML documents.
XSLT is used to render XML in a more readable format, using a stylesheet. For more details,
please visit https://www.w3.org/TR/xslt-30/ and https://www.w3.org/
TR/xquery-31/.

Let us explore a few XPath expressions from the XML file available to us at https://github.com/
PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/
blob/main/Chapter03/breakfast.xml, as seen in Figure 3.2:

https://www.w3.org
https://www.w3.org/TR/xslt-30/
https://www.w3.org/TR/xquery-31/
https://www.w3.org/TR/xquery-31/
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/blob/main/Chapter03/breakfast.xml
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/blob/main/Chapter03/breakfast.xml
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/blob/main/Chapter03/breakfast.xml

Introducing XPath and CSS selectors to process markup documents 61

Figure 3.2: XML content

As seen in Figure 3.2, we can deduce the following:

•	 Everything is a node in XML – breakfast_menu, food, name, and more

•	 An XML node can be an element itself, having start and end tags

•	 The breakfast_menu parent node has three child nodes called food

•	 Each food node has its own child nodes: name, price, and description

•	 There is no name-value pair or attributes in any nodes

For an XML document such as the one in Figure 3.2, most text or code editors provide some formatting
options, for example, folding or unfolding an element or parent node and beautifying the texture,
XPath query-related features, and more.

Important note
Numerous platforms and applications available online or offline provide XML formatting (plus
code-related features), beautifying options, and XPath expression testing. A few such online
providers are https://codebeautify.org, https://www.freeformatter.
com, https://xpather.com, https://try.jsoup.org/, and https://www.
webtoolkitonline.com/, among others.

In the following example, we will be using XPath Tester from Code Beautify (https://
codebeautify.org/Xpath-Tester) to format XML content and test XPath expressions:

https://codebeautify.org
https://www.freeformatter.com
https://www.freeformatter.com
https://xpather.com
https://www.webtoolkitonline.com/
https://www.webtoolkitonline.com/

Searching and Processing Web Documents62

Figure 3.3: XPath Expression – //food[price>1.99]/name

As seen in Figure 3.3, the //food[price>1.99]/name expression is applied to the XML file in
Figure 3.2.

As seen in the following output, the XPath expression applied in Figure 3.3 returns only the name
element of those food nodes where the predicate defined as [price>1.99] matches the price
value greater than 1.99:

<name>Brown Toast:Honey</name>
<name>Oat:Pancake</name>
<name>Creamy Yoghurt</name>

A predicate is used to identify a specific node or element. They are written using square brackets,
which are similar in syntax to Python lists. Here are a few XPath expressions with general explanations
applied on the breakfast.xml file seen in Figure 3.2:

•	 //: Document node

•	 *: All elements in the document

•	 //breakfast_menu: Root element and all elements within breakfast_menu

•	 //food: Selects all food elements

•	 //food/name: Selects the name element from all food elements

•	 //food[1]/name/text(): Returns only the text from name of the first food element

•	 //food[1]/name: Selects the name of the first food element, for example, <name>Brown
Toast-Honey</name>

•	 //food[2]/*: Selects all elements from food in the second position

Introducing XPath and CSS selectors to process markup documents 63

•	 //food[position()<3]/price: Selects the price of the food elements that are located
in a position less than 3

•	 //food[price>3.99]/name: Filters and selects all name elements from food elements
where price has a value greater than 3.99, for example, <name>Oat:Pancake</name>

•	 //food[last()]/name: Selects the name element of the last food element

•	 //food[last()]/name | //food[last()]/price: Selects the name and price
elements from the last food element

•	 sum(//food/price): Sums all the values of calories inside food, which adds up to
the value 11.9

•	 //food/name[contains(.,"Toast")]: Selects the name element of the food element
that contains the "Toast" string

•	 //food/description[starts-with(.,"Dried")]: Selects the description
element from the food element that matches the option that starts with the "Dried" string

•	 //food[price>1.99 and price<4.00]/name: Selects the name element from food
elements where the price>1.99 and price<4.00 filter options match

Now, with a basic idea about XPath expressions, let us consider some expressions with attributes.
Attributes are extra properties that identify certain parameters for a given node or element. A single
element can contain some unique or common attributes. Attributes in HTML play a significant role in
efficient and effective traversing. Let us consider the https://github.com/PacktPublishing/
Hands-On-Web-Scraping-with-Python-Second-Edition/blob/main/Chapter03/
books.xml XML file with the following content:

<books>
    <book id="1491946008" price="47.49">
        <author>Luciano Ramalho</author>
        <title>Fluent Python: Clear, Concise, and Effective
        Programming</title>
    </book>
    <book id="1491939362" price="29.83">
        <author>Allen B. Downey</author>
        <title>Think Python: How to Think a Computer
        Scientist</title>
    </book>
</books>

XPath expressions accept key attributes by adding or prepending the @ character to the key. Listed
here are a few expressions using attributes with brief explanations:

•	 //book/@price: Selects the price attribute of all books available

https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/blob/main/Chapter03/books.xml
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/blob/main/Chapter03/books.xml
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/blob/main/Chapter03/books.xml

Searching and Processing Web Documents64

•	 //book[@price>30]: Selects all elements of book where the price attribute is greater
than 30

•	 //book[@price<30]/title: Selects all the title elements from book where price
is less than 30

•	 //book/@id: Selects the book attribute of id and its value

•	 //@id: Selects the id attribute and its value

•	 //book[@price="29.83"]/author: Selects author from book where the price
attribute matches 29.83

•	 sum(//@price): Returns the total of price attribute values, i.e., 77.3

In this section, we have looked at a few examples and expressions to learn about XPath and how can
we use such expressions to retrieve the desired content. Similar to XPath, we also have selectors based
on CSS, which we will explore in more detail in the next section.

CSS selectors

In the Understanding the latest web technologies and Data-finding techniques used in web pages sections
in Chapter 1, we learned about CSS and its use to style HTML. There are various ways to apply CSS
to HTML.

CSS selectors (CSS queries or CSS selector queries) are defined patterns used by CSS to select elements.
Similar to XPath expressions, which are used to find and identify elements, CSS selectors are used
to select or find HTML elements and define a style for them. In the extraction process, we search for
and find elements using CSS selectors.

The following code shows plain HTML with basic tags:

<html>
<head>
    <style>
        a{color:blue;}
        h1{color:black; text-decoration:underline;}
        #idOne{color:red;}
        .classOne{color:orange;}
    </style>
</head>
<body>
    <h1> Welcome to Web Scraping </h1> Links:
     Google
     Yahoo
    
    

Introducing XPath and CSS selectors to process markup documents 65

    Wikipedia
</body>
</html>

As seen in the preceding code, we have basic HTML defined in the https://github.com/
PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/
blob/main/Chapter03/css_selector.html file, we can collect information such as
the following:

•	 <h1> is an HTML tag, an element, and a selector

•	 The first selector, <a>, has a single href attribute and it contains the text Google

•	 The second <a> selector has multiple attributes, such as class with the value classOne

•	 The last <a> selector also has multiple id attributes with the value idOne, href with some
values, and the text Wikipedia

The distinguished selectors, with or without attributes, in the preceding source code can be used to
select that particular element individually or in a group. Similar to XPath Tester, there are plenty of
DOM parser providers available online and offline with CSS query-related facilities. We will be using
https://try.jsoup.org, as seen in Figure 3.4:

Figure 3.4: Evaluating CSS query a#idOne

https://try.jsoup.org

Searching and Processing Web Documents66

CSS selectors have more variety in comparison to XPath expressions. In addition, they are categorized
into four basic groups, based on the complexity, code patterns, and features available. Let’s get some
more information on available groups, presented in the following subsections.

Element selectors

These are some of the basic selectors, even called common selectors, that select or choose elements
from HTML. Generally, these selectors are the basic tags of HTML, as seen in the following list:

•	 h1: Selects all <h1> elements in the document

•	 a: Selects all <a> elements in the document

•	 body *: Selects group of elements inside <body>

•	 div a: Selects all <a> elements inside <div>

•	 h1,a: Selects all <h1> and <a> elements

•	 h1 + a: Selects element <a> immediately after element <h1>

•	 h1 ~ a: Selects every <a> element preceded by <h1>

ID and class selectors

This type of selector adds additional features to the element selectors. In HTML where CSS has
been used, we can find plenty of attributes, such as the ID represented by the # symbol and the class
represented by .. These are also known as global or common attributes within HTML elements.
These global attributes are mostly preferred over other attributes, as they define tags for structure
and identification.

Listed here are the global attributes as found in the code and expressed as follows:

•	 .classOne: Selects an individual or group of elements with class=classOne

•	 #idOne: Selects an element with id=idOne

•	 a.classOne: Selects an individual or group of <a> elements with class=classOne

•	 a#idOne: Selects an individual <a> element with id=classOne

Attribute selectors

HTML tags contain attributes (single or multiple) that help to identify a particular element with the
value it carries. These are much like the predicates used in XPath, as listed here:

•	 a[href*=".org"]: Selects <a> with the href attribute and finds .org in its value.

•	 a[href^="https"]: Selects <a> with the href attribute and a value that starts with https.

•	 a[href$=".com"]: Selects <a> with the href attribute and a value that ends with .com.

Introducing XPath and CSS selectors to process markup documents 67

•	 a[href~=google]: Selects <a> with the href attribute and containing the text google.
This is similar to a[href*="google"].

•	 [class=classOne]: Selects elements that have class=classOne.

•	 [href]: Selects all elements with the href attribute name.

As seen in the preceding CSS selectors list, a few regular expression (regex or Regex) related syntaxes
are also being used. This makes CSS selectors almost like regex for HTML documents. Here are some
basic explanations of the symbols used in regex:

•	 * and ~: Represent find or search, though both are used differently

•	 $: Represents the end of a string

•	 ^: Represents the beginning of a string

Pseudo selectors

This type of selector is a set of handy choices when it comes to identifying or selecting elements based
on their positions. Here are a few with basic explanations:

•	 a:eq(1): Selects <a> at position one or the first <a> in the document

•	 a:gt(1): Selects all <a> elements located at a position greater than one

•	 :not(h1): Selects all elements in HTML available except <h1>

•	 a:first-child: Preferred with nested elements, this selects every <a> element that is the
first child of its parent

•	 a:last-child: Selects every <a> element that is the last child of its parent

•	 a:nth-child(1): Selects every <a> element from the first child of its parent

•	 a:nth-last-child(2): Selects every second <a> element from the last child of its parent

•	 a:nth-of-type(2): Selects every second <a> element from its parent

•	 a:nth-last-of-type(2): Selects every <a> element in the second position from the
last of its parent

•	 a:last-of-type: Selects the last <a> element of its parent

CSS selectors are used as a convenient alternative to XPath expressions. They are somewhat shorter in
length and use both simple and regex-like patterns in their expressions. CSS selectors can be converted
into XPath expressions, but not vice versa.

Many open source tools and applications that deal with XPath and CSS selectors provide facilities to
convert between the two, but it’s the responsibility of the developer to test such expressions and apply
them accordingly in code. As we saw, in https://try.jsoup.org, such an option does exist.

https://try.jsoup.org

Searching and Processing Web Documents68

https://css-selector-to-xpath.appspot.com/ is quite popular among developers,
shown in Figure 3.5:

Figure 3.5: CSS selector to XPath

In this section, we explored and learned about the most popular web-related pattern-finding
techniques, XPath and CSS selectors. We can use both or either one of them as per convenience, code
requirements, and availability in chosen libraries. In the next section, we will explore and learn about
using browser-based DevTools.

Using web browser DevTools to access web content
DevTools are some of the most important tools available to us to explore response content of any type,
such as HTML, JSON, XML, or TXT.

In the Developer tools section of Chapter 1, we introduced browser-based DevTools with various helpful,
information-packed panels and a brief introduction to them. In this section, as the heading reads,
we will be using DevTools to locate, find, or access the web content that we are seeking. Normally,
we will search for and find the elements holding content in a similar way to how we dealt with XPath
and CSS selectors using expressions.

We will explore web content using Google Chrome. Chrome has built-in DevTools with plenty of
features that help us, with information on cookies, headers, curl scripts, prettifying the DOM,
DOM navigation, displaying line numbers, folding/unfolding code blocks, element selection, element
identification, content searching, and generating XPath and CSS selector expressions.

Important note
cURL, or curl, is a command-line tool and library that is used to communicate with servers and is
used by machines and scripts to deal with URLs in the transfer of resources. Many programming
languages use a library that communicates with curl and handles the communication with the
web. For more information on curl, please visit https://curl.se/. You can also explore
the Python interface to cURL (PycURL) at http://pycurl.io/.

https://css-selector-to-xpath.appspot.com/
https://curl.se/
http://pycurl.io/

Using web browser DevTools to access web content 69

We will now proceed with loading some URLs in Chrome and accessing some elements or navigating
through the DOM using DevTools on the response content.

HTML elements and DOM navigation

The step of accessing elements and DOM navigation is important when we are codifying the concept
or planning a crawler.

At this point, we should also know to be flexible enough that whatever URL we are trying to load
and process could be changed or updated. Therefore, to deal with such situations occurring, we have
selected a few sites that are available online for people to learn about web scraping and implement
scraping. We also used those sites in the first edition of this book, Hands-On Web Scraping with Python
by Packt Publishing. You are free to use a similar concept and steps with any other URL.

We will be using https://toscrape.com. This site provides two different URLs, http://
books.toscrape.com and http://quotes.toscrape.com/, both loaded with plenty
of categories, labeling, paginated content, DOM elements, authorization-related sections, and much
more. Let us load http://books.toscrape.com using Google Chrome, as seen in Figure 3.6:

Figure 3.6: Loading books.toscrape.com

As the page content is successfully loaded, we can load DevTools with a right-click on the page and
by selecting the Inspect option or by pressing Ctrl + Shift + I. With DevTools available, first, we can
find a pointer icon listed on the left. This is used for selecting elements from the page, as shown in
Figure 3.7. This element selector (also known as the element inspector) located in the top-left corner
of DevTools, can be turned on and off by clicking it or pressing Ctrl + Shift + C:

http://books.toscrape.com
http://books.toscrape.com
http://books.toscrape.com

Searching and Processing Web Documents70

Figure 3.7: Element selector (inspector) on DevTools

We can move the mouse on the loaded web page by clicking the element inspector, and also by
pressing Ctrl + Shift + C. The mouse or screen cursor can also be moved in the code available in the
Elements panel.

We search for the exact HTML element, <div class="alert alert-warning"..>, that
we are pointing to, using the element selector, as seen in Figure 3.8:

Figure 3.8: Using the element selector on the Warning! element

The following can be seen in Figure 3.8:

•	 The <div class="alert alert-warning"..> element found inside <section>
has been selected.

•	 The Warning text is found inside <div> with the node. There is also a highlight
on the page for that particular element.

We can repeat the steps discussed, shown in Figure 3.7 and Figure 3.8, select any part of the page, and
find the HTML tags or move across HTML and find a page section that is highlighted. We can also
right-click in the element code and find options such as Add attribute, Edit attribute, Duplicate
element, Delete element, Cut, Copy XPath, and Copy selector.

Using web browser DevTools to access web content 71

Important note
If we had to find the Warning text and the DOM element containing it without DevTools, then
we would use the page source. To load the source of the page, we can right-click on the page
and choose the View Page Source option or use Ctrl + U. This loads a new tab in the browser,
such as view-source: http://books.toscrape.com/. On this page, we can search for
the text and find it using line numbers and the DOM elements.

DOM elements found using the element selector and page source should be verified, and
might not be the same every time. In such cases, we should consider the element found from
the page source.

So far, we have explored XPath, CSS selectors, and DevTools. In the next section, we will collect XPath
and CSS selectors for the chosen element.

XPath and CSS selectors using DevTools

Let us proceed with the following steps to obtain an XPath and CSS query for the title with the text
A Light in the … and the <a> tag, as seen in Figure 3.9:

1.	 Choose Element selector and trace the <a> element.

2.	 Right-click on the traced element, <a>.

3.	 Select Copy from the available menu.

4.	 Select Copy XPath for XPath or Copy selector for CSS selector, as shown in Figure 3.9:

Figure 3.9: Copying XPath and CSS selector using element selector or inspector

http://books.toscrape.com/

Searching and Processing Web Documents72

Listed here are some results obtained from the preceding steps:

•	 Copy XPath: //*[@id="default"]/div/div/div/div/section/div[2]/ol/
li[1]/article/h3/a

•	 Copy full XPath: /html/body/div/div/div/div/section/div[2]/ol/li[1]/
article/h3/a

•	 Copy selector: #default > div > div > div > div > section > div:nth-
child(2) > ol > li:nth-child(1) > article > h3 > a

•	 Copy element: <a href="catalogue/a-light-in-the-attic_1000/index.
html" title="A Light in the Attic">A Light in the ...

Similarly, you will collect the required expressions for selected elements. After collecting and verifying
or testing the expressions, scraping logic is applied using Python to automate the data collection
process. Understanding DOM elements (with attributes) and HTML page sources are a couple of the
common areas that you must be familiar with.

There is no particular or perfect way to determine the HTML elements related to expressions. We should
use tools, as discussed in this section, along with the page source available. You can choose any available
tools or plugins on the market or browser-based extensions to determine the element expressions.

In this section, we inspected and explored the Elements panel for element identification and DOM
navigation. In the next section, we will use the lxml Python library to scrape code and collect data
from toscrape.com using XPath and CSS selectors.

Scraping using lxml – a Python library
The lxml library is an XML toolkit with a rich library set to process XML and HTML. lxml is preferred
over other XML-based libraries in Python for its high speed and effective memory management, plus
it has various other features to handle both small and large XML files.

Python programmers use lxml to process XML and HTML documents. There are plenty of other
such libraries in Python; a few even build on top of lxml with extra add-ons. lxml is also used
as a parser engine in Python libraries such as Beautiful Soup (https://www.crummy.com/
software/BeautifulSoup/bs4/doc/) and pandas (https://pandas.pydata.org/).

DOM parsing, traversing element trees, XPath, and CSS selector are the features that make lxml effective
and efficient enough for tasks such as web scraping. For more details on lxml and its documentation,
please visit https://lxml.de/.

Important note
lxml provides native support to XPath and XSLT and is built on the powerful C libraries
libxml2 and libxslt. Its library set is normally used with XML or HTML to access XPath
and parse, validate, serialize, transform, and extend features from ElementTree (https://
lxml.de/tutorial.html).

http://toscrape.com
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://pandas.pydata.org/
https://lxml.de/
https://lxml.de/tutorial.html
https://lxml.de/tutorial.html

Scraping using lxml – a Python library 73

Elements of markup language such as XML and HTML have start and close tags. Tags can also have
attributes and can contain other elements. ElementTree is a wrapper that loads XML files as trees
of elements. The Python built-in xml.etree (https://docs.python.org/3/library/
xml.etree.elementtree.html) library is used to search, parse elements, and build document
trees. Element objects also exhibit various accessible properties related to Python lists and dictionaries.

lxml contains important modules, listed here:

•	 lxml.etree (https://lxml.de/tutorial.html): For parsing and implementing
ElementTree elements. Supports XPath, iterations, and more.

•	 lxml.html (https://lxml.de/lxmlhtml.html): Parses HTML and supports XPath,
CSS selectors, HTML forms, and form submission.

•	 lxml.cssselect (https://lxml.de/cssselect.html): Converts CSS selectors
into XPath expressions. Accepts CSS selectors or CSS queries as expressions.

With that basic introduction to lxml, let’s explore some examples in the next section.

lxml by example

lxml is a core library and has a huge module set. In this section, we will explore the most common
features of lxml with examples such as reading XML and HTML files and using lxml modules for
scraping purposes.

Reading XML files

In this example, we will be reading the XML content available in the https://github.com/
PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/
blob/main/Chapter03/breakfast.xml file using lxml, as seen in Figure 3.10:

Figure 3.10: Reading an XML file using lxml

https://lxml.de/tutorial.html
https://lxml.de/lxmlhtml.html
https://lxml.de/cssselect.html
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/blob/main/Chapter03/breakfast.xml
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/blob/main/Chapter03/breakfast.xml
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/blob/main/Chapter03/breakfast.xml

Searching and Processing Web Documents74

As seen in Figure 3.10, the xml variable now contains the file content in bytes. We need to parse this
to convert it into an etree element. We can use an lxml default parser such as etree.parse(), or
as the content is an XML file here, we have chosen etree.XML(). In Figure 3.11, we can also find
which parser is being used by using etree.get_default_parser().

Figure 3.11: Parsing the file content

We can see that tree is an Element object of lxml.etree. The element tree has been defined;
now we can traverse and achieve node-based results such as iterating. As seen in Figure 3.12, we first
iterate across all tree nodes using tree.iter(). If we are targeting some specific nodes such as name
and calories, then we can choose them, for example, tree.iter('name', 'calories'):

Figure 3.12: Iterating through all and then selected tree nodes

In Figure 3.13, we are applying logic on element tags and their text, as well as applying XPath using
the tree.xpath() method to acquire the desired results:

Scraping using lxml – a Python library 75

Figure 3.13: Iterating and applying logic with specific nodes and using XPath

As seen in this section, we need to parse the content first and then we can apply element-based logic to
parts of content or whole content. Only basic usage of etree and its core features related to reading
and traversing are used in this example. We will read and further process HTML documents in the
next section.

Reading HTML documents

In this example, we will pass a request to the URL http://httpbin.org/forms/post using
urllib.request, parse the web content using lxml.html, and traverse through the elements
as lxml.html.HTMLElement, applying XPath and CSS selectors. Let’s import and define the
URL to be used, as seen in the following code:

from lxml import html
from urllib.request import urlopen   #loading URL
url='http://httpbin.org/forms/post'

Now, we will pass a request to the defined url string, using urlopen(), and parse the response
received. As seen in the following code, parse() returns lxml.etree, but using getroot(),
we are receiving HTMLElement as root. As this example is regarding HTML, we are interested
in HTMLElement:

tree = html.parse(urlopen(url))  # load URL using urlopen and parse
type(tree)                       # lxml.etree._ElementTree
root = tree.getroot()          # returns the document root node <html>
type(root)                     # lxml.html.HtmlElement

http://httpbin.org/forms/post

Searching and Processing Web Documents76

We can process tree similarly to handling XML files and iterating through elements. For this example,
we will use a few new functions, as listed here:

•	 find(): Used to locate the first element and returns Element. Similar to find() and
findall(), it can be used to find and iterate through all elements.

•	 text_content(): Returns the text of the matched element.

•	 findtext(): Returns the text from the path provided.

These new functions are used in the following code:

tagP = root.find('.//p')             # .//p
print(tagP.text_content())
"Customer name: "
tagP1 = root.findtext('.//p/')    #.//p/
print(tagP1)
"Customer name: "

Now, as we are able to find and print text from elements, we will apply XPath and use CSSSelect
(CSSSelect converts CSS selectors to XPath) on the scraper code.

As seen in the following code, XPath is applied as root.xpath() and CSS selectors as root.
cssselect(), and the results obtained are exactly the same as for xpath() and cssselect():

print(root.xpath('//p/label/input/@value'))
print(root.xpath('//legend/text()'))
print([formP.text_content().strip() for formP in root.xpath('//
form/p')])
…
print([e.get('value') for e in root.cssselect('p label
input[value]')])
print([l.text_content() for l in root.cssselect('legend')])
print([p.text_content().strip() for p in root.cssselect('form > p')])

The preceding code will result in exactly the same output as follows:

['small', 'medium', 'large', 'bacon', 'cheese', 'onion', 'mushroom']
[' Pizza Size ', ' Pizza Toppings ']
['Customer name:', 'Telephone:', 'E-mail address:', 'Preferred
delivery time:', 'Delivery instructions:', 'Submit order']

As there is a <form> element available in the HTML page source, and as seen in the expressions
in the example, we can target specific elements too – say, the <form> element available in root.

Scraping using lxml – a Python library 77

As seen in the following code, there is only one <form> element found:

print(root.forms)
[<Element form at 0x1………..>]
print(root.forms[0].items())
[('method', 'post'), ('action','/post')]
print(root.forms[0].keys())
['method', 'action']
print(root.forms[0].method)
POST
print(root.forms[0].action)
http://httpbin.org/post

The element possesses items() and keys() and we can get more information regarding method
(the method attribute with a value such as GET/POST) and action (the action attribute with
a link, where the form values will be submitted).

In this section, we learned how to read, load, and parse content. We also looked at a few examples
of element-based activities, such as iterating, finding elements, returning text, and applying XPath
and CSS selector expressions. With this overview and look at code examples dealing with XML and
HTML, in the next section, we will be scraping a website using lxml.

Web scraping using lxml

In this section, we will demonstrate an example related to web scraping using lxml. We will scrape
and collect data from http://books.toscrape.com. To be more specific, we will target books
from the Childrens category (http://books.toscrape.com/catalogue/category/
books/childrens_11/index.html):

Figure 3.14: Childrens category page

http://books.toscrape.com

Searching and Processing Web Documents78

As seen in Figure 3.14, this page has 29 results, showing 20 on a page, so we have to implement the
pagination concept: find the total pages, target the desired elements with expressions, and write data
to a CSV file.

Important note
As we will be dealing with multiple pages for the selected category, it’s good practice to explore
and check the web response or page source using DevTools, targeting the page URL and
information that we are looking for. A paginated URL might contain some different patterns
for inner pages than the first page. Also, identify and collect the element name and XPath or
CSS selector expression. In addition, while tracing content, it might be available in the page
source or at some inner links with the use of an API. If an API exists, then the scraping task
will be easier.

After a preliminary study of the page structure and the required URLs, we deploy the code shown here:

import lxml.html as web
from lxml.etree import XPath
….
baseUrl="http://books.toscrape.com/"  # URLs and Columns
bookUrl=baseUrl+"catalogue/category/books/childrens_11/index.html"
pageUrl=baseUrl+"catalogue/category/books/childrens_11/page-" # page-
1,2
columns=['title', 'price', 'stock', 'imageUrl', 'rating', 'url']  #
Columns for CSV header

dataSet=[]   # container for collected data
page=1       # default
totalPages=1 # default

As seen in the preceding code, we will be using lxml, XPath, the math library (for dealing with
pagination), and csv (writing data to a CSV file). We have explored the pages of the site and come up
with links such as baseUrl, bookUrl, and pageUrl for pagination. To begin with, for pagination,
we have page and totalPages with the same or default values, and an empty dataSet list will
be used to place collected data:

while page <= totalPages:
    source = web.parse(pageUrl + str(page)+".html")
        .getroot() # read and parse
    if page==1:        # pagination
        perpageArticles =
            source.xpath("//form[@class=\"form-
            horizontal\"]/strong[3]/text()")   # 20
        totalArticles = source.xpath("//form[@class=

Scraping using lxml – a Python library 79

            \"form-horizontal\"]/strong[1]/text()")
            # 29
        totalPages = math.ceil(int(totalArticles[0])/
            int(perpageArticles[0])) # 1.45
    print("Processing Page "+ str(page) +" from ",
        totalPages)

In the preceding code, we started a loop, plus read and parsed pageUrl for the root element. We
then used expressions and found the count of totalArticles (an article is a block of the DOM
representing a single book element), perPageArticles found on a single page, and the total
number of pages or totalPages. math.ceil() is used to obtain the float value for totalPages.

Continuing with the loop, we declare DOM expressions for each book as articles using XPath,
then use XPath for all the required elements, such as titlePath: book name, ratingPath:
rating, and so on, targeting particular elements whose data is to be obtained:

articles = XPath("//ol[contains(@class,'row')]/li[position()>0]")
titlePath = XPath(".//article[contains(@class,'product_pod')]/h3/a/@
title")
……
ratingPath = XPath(".//article/p[contains(@class,'star-rating')]/@
class")

With a handful of XPath expressions, we loop through articles found in the page response or
source to obtain selected entities:

for row in articles(source):
        title = titlePath(row)[0].strip()
        link = linkPath(row)[0].replace('../../../',
            baseUrl+'catalogue/').strip()

        price = pricePath(row)[0]
        availability = stockpot(row)[0].strip()
        image = imagePath(row)[0].replace('../../../../',
            baseUrl).strip()
        rating = ratingPath(row)[0].replace(
            'star-rating','').strip()

After receiving the entities, cleaning them, and removing unwanted text (using replace() and
strip()), we add them to dataSet:

        if len(title)>0:      # if title is not missing,add to dataSet
             dataSet.append([title, price, availability,
                 image, rating, link])

Searching and Processing Web Documents80

Finally, we write dataSet to a CSV file, with the help of the csv library:

def writeto_csv(data,filename,columns):
    with open(filename,'w+',newline='',encoding="UTF-8") as
    file:
        writer = csv.DictWriter(file, fieldnames=columns)
        writer.writeheader()
        writer = csv.writer(file)
        for element in data:
            writer.writerows([element])

We have built the writeto_csv() function to convert data from dataSet to a CSV file. It takes
three arguments, listed here:

•	 data: The data collection object or dataSet in this example case

•	 filename: The name of the CSV file to generate, for example, books.csv

•	 columns: Column names for the CSV file for those fields that are to be extracted

After appending all the desired data to dataSet, we finally call the write_to_csv function as
writeto_csv(dataSet,'books.csv',columns). This will create the books.csv file,
which looks as shown in Figure 3.15:

Figure 3.15: Output from books.csv, with data from the Childrens category

It’s also to be noted that CSS selector queries or XPath queries directly copied from DevTools might
be different than we have used in the example in this section. We have tried to use possible short
expressions with some additional and in-depth tactics, plus applying additional methods from
Python programming.

Parsing robots.txt and sitemap.xml 81

In this section, we successfully scraped and collected the data from the selected URL and wrote the
data to a CSV file. In the next section, we will look at two of the major resources that are available on a
website. These resources hold a defined set of instructions, and also the links available across the website.

Parsing robots.txt and sitemap.xml
In this section, we will introduce robots.txt- and sitemap.xml-related information and follow
the instructions or resources available in those two files. We mentioned them in the Data-finding
techniques used in web pages section of Chapter 1. In general, we can dive deep into the pages, or the
directory with pages, of websites and find data or manage missing or hidden links using the robots.
txt and sitemap.xml files.

The robots.txt file

The robots.txt file, or the Robots Exclusion Protocol, is a web-based standard or protocol used
by websites to exchange information with automated scripts. robots.txt carries instructions
regarding site-based links or resources to web robots (crawlers, spiders, web wanderers, or web bots),
and uses directives such as Allow, Disallow, SiteMap, Crawl-delay, and User-agent to
direct robots’ behavior.

We can find robots.txt by adding robots.txt to the main URL. For example, robots.txt
for https://www.python.org can be accessed with https://www.python.org/robots.
txt. It’s also not obligatory that the robots.txt file is available on each website. Following the
directives available in the robots.txt file is the ethical duty of all developers. Web crawlers should
obey the directives mentioned in the file. If any access violation is caused by web crawlers or automated
activities, website administration can take the following actions:

•	 Enhance security mechanisms to restrict any unauthorized access to the website (say, by imposing
CAPTCHAs or timeouts, deploying other anti-scraping tools, and more)

•	 Impose a block on the traced IP address or block the site access of the account that is violating
the terms and causing damage to the website or server security

•	 Take the necessary legal action

https://www.python.org

Searching and Processing Web Documents82

Figure 3.16 shows that User-agent:Nutch is not allowed to crawl python.org:

Figure 3.16: robots.txt file

Let us try to understand a few directives shown in Figure 3.16:

•	 Allow: Permits robots to access the link or directories defined.

•	 Disallow: Restricts robots from accessing the link or directories defined.

•	 User-agent: Agents, robots, or browser platforms mentioned should follow the directives
mentioned for those User-agent objects. If * (an asterisk) is found mentioned in User-agent,
it represents all agents. Sometimes, User-agent provides an agent name, such as Nutch,
in Figure 3.16.

As mentioned in this section, we obey and follow the directives mentioned in the robots.txt file.
Often, there might not be simple or easy-to-read content and, during automation, if we wish to test
the directive’s response on the fly, then parsing robots.txt is very helpful.

Parsing robots.txt and sitemap.xml 83

Parsing robots.txt

Using a parser, we do not need to read the file manually and follow or instruct the steps upon the code
found. Also, there might be cases that require iteration, validating User-agent for some links, or
determining the crawl-delay value of the sitemap.xml file (the prescribed time that must
take place during processing). This information is extremely valuable to automate crawlers for some
websites and even decide the level of information or coding tactics that might be required.

As seen in the following code, urllib has robotparser, which allows developers to read robots.
txt and validate or verify the necessary actions:

import urllib.robotparser
robot = urllib.robotparser.RobotFileParser()
robot.set_url("https://www.python.org/robots.txt")
robot.read()
robot
<urllib.robotparser.RobotFileParser at …….>

We can see examples for methods such as can_fetch(), which deals with the Allow and Disallow
directives and returns a Boolean value of True or False, respectively. Similarly, if the sitemap.
xml file exists, then robot.site_maps() will return the links:

robot.can_fetch('*','https://docs.python.org/3/library/urllib.
robotparser.html')
robot.can_fetch('Nutch','https://docs.python.org/3/library/urllib.
robotparser.html')
robot.site_maps()

For more information on robots.txt directives, please visit http://www.robotstxt.org.
For parsing, visit https://docs.python.org/3/library/urllib.robotparser.
html for more details.

Sitemaps

A sitemap, or sitemap.xml, is an XML file that holds the information related to links for a website.
Links can be page URLs or to specific media. A sitemap is an easy way to inform search engines
about URLs (added, updated, modified date, removed URL, priority, changefreq, and more) or URL
management on the site. Search engine scripts crawl the links in sitemaps and use the links found for
indexing and various purposes, such as Search Engine Optimization (SEO).

http://www.robotstxt.org
https://docs.python.org/3/library/urllib.robotparser.html
https://docs.python.org/3/library/urllib.robotparser.html

Searching and Processing Web Documents84

Similar to robots.txt, we can find sitemaps for a domain by appending a URL with sitemap.
xml. Contents inside a sitemap keep changing and sitemaps may not be available for all websites.
As seen in Figure 3.17, the sitemap of https://www.schools.com/sitemap.xml, there are
plenty of <url> nodes, with a few child nodes:

Figure 3.17: sitemap.xml

Information in the child nodes, such as <lastmod>, notifies us when the last modification took place
for the <loc> child element. Similarly, <changefreq> is the changing duration of the <loc>
element’s contents. We can deal with sitemap content or parse a sitemap as we did in the Reading
XML files section.

Important note
There are plenty of Python libraries available that read and parse sitemap.xml and robots.
txt. Among those, https://pypi.org/project/advertools/ is one of the popular
ones among the developer community. We also can parse and apply logic in sitemaps using
lxml. For more details on sitemaps, explore https://www.sitemaps.org/.

Summary
In this chapter, we learned about DOM navigation, XPath, and CSS selectors using the page source
and DevTools. We also learned about reading and accessing XML and HTML files and defining and
using XPath and CSS selector expressions for content extraction.

https://www.schools.com/sitemap.xml
https://pypi.org/project/advertools/
https://www.sitemaps.org/

Further reading 85

We also looked at various aspects of content extraction, plus the benefits and restrictions imposed
by robots.txt and sitemaps. The main objective of the chapter was to demonstrate core features
related to nodes, element identification from HTTP responses received, using the lxml and urllib
libraries as required, and dealing with XML and HTML files. Finally, web scraping techniques were
deployed using an example and data was collected and written to a CSV file.

In the next chapter, we will learn more about web scraping techniques and about some new Python libraries.

Further reading
•	 XPath:

	� https://www.w3.org/TR/xpath-31/

	� https://www.w3schools.com/xml/xpath_intro.asp

•	 CSS selectors:

	� https://www.css3.info/

	� https://www.w3schools.com/cssref/css_selectors.php

	� https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors

•	 lxml: https://lxml.de/

•	 XML:

	� https://www.w3.org/XML/

	� https://developer.mozilla.org/en-US/docs/Web/XML/XML_
introduction

•	 HTML DOM:

	� https://html.spec.whatwg.org/multipage/

	� https://www.w3schools.com/html/

	� https://www.w3schools.com/xml/dom_intro.asp

•	 robots.txt:

	� https://developers.google.com/search/docs/crawling-indexing/
robots/intro

	� https://www.robotstxt.org/robotstxt.html

https://www.w3schools.com/xml/xpath_intro.asp
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors
https://lxml.de/
https://www.w3.org/XML/
https://developer.mozilla.org/en-US/docs/Web/XML/XML_introduction
https://developer.mozilla.org/en-US/docs/Web/XML/XML_introduction
https://www.w3schools.com/xml/dom_intro.asp
https://www.robotstxt.org/robotstxt.html

Searching and Processing Web Documents86

•	 Sitemaps:

	� https://www.sitemaps.org/

	� https://www.wordstream.com/blog/ws/2022/11/14/what-is-a-sitemap

	� https://developers.google.com/search/docs/crawling-indexing/
sitemaps/overview

•	 DevTools:

	� https://developer.chrome.com/docs/devtools/

	� https://developer.mozilla.org/en-US/docs/Learn/Common_questions/
Tools_and_setup/What_are_browser_developer_tools

https://www.sitemaps.org/
https://developers.google.com/search/docs/crawling-indexing/sitemaps/overview
https://developers.google.com/search/docs/crawling-indexing/sitemaps/overview
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/Tools_and_setup/What_are_browser_developer_tools
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/Tools_and_setup/What_are_browser_developer_tools

4
Scraping Using PyQuery, a

jQuery-Like Library for Python

In the previous chapters, you learned about the basics of web scraping, the technologies involved, data-
finding techniques, and traversing markup documents for data with the help of some Python code.

Web scraping is a handful of tasks that involve reverse engineering techniques. It entails exploring
a website (examining its content-related structure, DevTools, paginations, and more), preparing or
installing tools (libraries and so on), coding and testing, and finally, collecting data in files, clouds,
databases, and many more places. In this chapter, we will be learning about web scraping using the
PyQuery Python library; this library assists us in the use of concepts such as XPath, CSS selectors,
and parsing markup documents. PyQuery provides a jQuery-like ability to write less, do more, which
is very significant when coding web scrapers.

In particular, this chapter will cover the following topics:

•	 PyQuery overview

•	 Exploring PyQuery

•	 Web scraping using PyQuery

Technical requirements
A web browser (Google Chrome or Mozilla Firefox) will be required, and we will be using Jupyter
notebooks for code using JupyterLab.

Please refer to the Creating a virtual environment section in Chapter 2 to continue setting up and
using the created environment.

Scraping Using PyQuery, a jQuery-Like Library for Python88

The Python libraries that are required for this chapter are as follows:

•	 pyquery

•	 urllib

•	 requests

The code files for this chapter are available online on GitHub: https://github.com/
PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/
tree/main/Chapter04

PyQuery overview
PyQuery is a jQuery-like library for Python that facilitates the easy implementation and use of lxml
and CSS selectors.

As the name suggests, PyQuery enhances query-related procedures (XPath and CSS selector expressions)
with short and readable lines of code. Web scraping, as you all are aware, requires parsing and traversing
features that reside on top of various types of web documents.

PyQuery provides additional features related to DOM and ElementTree, and uses CSS selectors to
perform queries. The purpose of using PyQuery expressions (or queries) is similar to that of XPath
or CSS selector-based expressions. PyQuery is almost the same as jQuery for web documents.

The following list contains a basic comparison of expressions that collect the href attribute from the
 element:

•	 PyQuery: response.find('a.main').attr('href')

•	 lxml XPath: response.xpath(".//a[contains(@class,'main')]/@href")

•	 lxml cssselect: response.cssselect("a.main").get('href')

•	 jQuery: $('a.main').attr('href');

Important note
For more details on PyQuery and its latest documentation, please visit https://pyquery.
readthedocs.io/en/latest/ and https://pypi.org/project/pyquery/.
Similarly, for lxml (XPath and cssselect), visit https://lxml.de/index.html.

After our short introduction to PyQuery and its similarities with XPath and CSS selectors, let’s go
over the basics of jQuery.

https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/tree/main/Chapter04
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/tree/main/Chapter04
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/tree/main/Chapter04
https://pyquery.readthedocs.io/en/latest/
https://pyquery.readthedocs.io/en/latest/
https://pypi.org/project/pyquery/
https://lxml.de/index.html

Exploring PyQuery 89

Introducing jQuery

jQuery (write less, do more; see https://jquery.com/) is one of the most popular JavaScript
libraries and is lightweight, CSS3-complaint, cross-browser compatible, and quick. It supports plenty
of features related to web documents, such as the DOM, HTML, and CSS.

Web-based document traversal, manipulation, event handling, animation, and AJAX are some of the
core features jQuery is applied to. PyQuery expressions are similar to jQuery expressions, so anyone
with prior jQuery and JavaScript knowledge will find it easy to use PyQuery with Python.

Throughout the chapter, you will be focused on using Python libraries only. Web development today
involves JavaScript in relation to dynamism, development and testing, and many other aspects. For a full
stack developer or web-related programmer, knowledge of JavaScript, along with AJAX and jQuery, is
almost compulsory. Please visit https://learn.jquery.com/ for more information on jQuery.

You’ve received a basic introduction to PyQuery and jQuery in this section. The next section will
explore PyQuery in depth and show you how to use it to write a crawling script or scrape a website.

Exploring PyQuery
PyQuery addresses DOM-based expressions or queries in a quick, easy, and effective manner. In this
section, we will install PyQuery and explore a few of its important features so that we are ready to
develop a web scraping script.

Important note
You can find plenty of Python libraries that are similar to PyQuery. A few examples are parsel
(https://pypi.org/project/parsel/), beautifulsoup (https://pypi.
org/project/beautifulsoup4/), selectolax (https://pypi.org/project/
selectolax/), and, of course, lxml (https://pypi.org/project/lxml/).

Installing PyQuery

Please refer to the Technical requirements section before proceeding with installing the PyQuery
library. With the help of the virtual environment (secondEd) you created in Chapter 2, install or
update PyQuery using pip:

Figure 4.1: Installing PyQuery

https://jquery.com/
https://learn.jquery.com/
https://pypi.org/project/parsel/
https://pypi.org/project/beautifulsoup4/
https://pypi.org/project/beautifulsoup4/
https://pypi.org/project/selectolax/
https://pypi.org/project/selectolax/
https://pypi.org/project/lxml/

Scraping Using PyQuery, a jQuery-Like Library for Python90

As shown in Figure 4.1, installing PyQuery also installs or updates the lxml and cssselect libraries.
To verify the installation, let’s import PyQuery using the following code:

import pyquery
print(dir(pyquery)) # Explore pyquery
['PyQuery', '__builtins__', '__cached__', '__doc__', '__file__',
'__loader__', '__name__', '__package__', '__path__', '__spec__',
'cssselectpatch', 'openers', 'pyquery', 'text']

In the preceding code, we imported PyQuery and checked the resources of the library using dir().
There are some functions and classes; here, we will be mostly using the PyQuery class:

print(dir(pyquery.PyQuery)) #Class PyQuery provides DOM related
features
['Fn', '__add__',….,'add_class', 'after', 'append', 'appendTo',
'append_to', 'attr', 'base_url', 'before', 'children', 'clear',
'clone', 'closest', 'contents', 'copy', 'count', 'css', 'each',
'empty', 'encoding', 'end', 'eq', 'extend', 'filter', 'find', 'fn',
'hasClass', 'has_class', 'height', 'hide', 'html', 'index', 'insert',
'insertAfter', 'insertBefore', 'insert_after', 'insert_before', 'is_',
'items', 'length', 'make_links_absolute',…, 'parent', 'parents',
'pop', 'prepend', 'prependTo', 'prepend_to', 'prev', 'prevAll',
'prev_all', 'remove', 'removeAttr', 'removeClass', 'remove_attr',
'remove_class', 'remove_namespaces', 'replaceAll', 'replaceWith',
'replace_all', 'replace_with', 'reverse', 'root', 'serialize',
'serializeArray', 'serializeDict', …., 'show', 'siblings', 'size',
'sort', 'text', 'toggleClass', 'toggle_class', 'val', 'width', 'wrap',
'wrapAll', 'wrap_all', 'xhtml_to_html']

In the preceding code, we explored the PyQuery class and found many of the methods and attributes
that somewhat resemble DOM concepts such as attr, children, eq, root, parent, next,
and hasClass.

Important note
Code and outputs are copied from the Jupyter notebook. A single-line comment with # has
been used to present short outputs and comments. If the output is spread across multiple lines,
then a new line with # has been used. Also, multi-line outputs will be shortened as required.

In this section, you installed PyQuery and learned about a few of its features. In the next section, you
will explore some examples of using PyQuery.

Exploring PyQuery 91

Loading a web URL

We will now practically explore PyQuery’s features with the help of some code examples. Various types
of web documents are available. We will be targeting HTML and XML content using the requests
library as follows:

from pyquery import PyQuery as pq
import requests
response = requests.get
    ("https://webscraper.io/test-sites/")
type(response)      # requests.models.Response
source = pq(response.content) # convert HTTP Response to pyquery
type(source) # pyquery.pyquery.PyQuery

As you can see in the preceding code, we have used the requests library for HTTP communication. In
this example, we are processing the https://webscraper.io/test-sites/ URL, and we are
checking the type of response and source. We need to convert the page source or HTTP response
into a PyQuery object before processing the DOM using pyquery. source = pq(response.
content) converts the response.content page source from the web into a PyQuery object.

With the PyQuery object, source, in hand, we are now ready to move on to the next section, where
we will explore more features of PyQuery.

Element traversing, attributes, and pseudo-classes

With the source PyQuery object from the previous section, we will explore some of the attributes
and methods that PyQuery provides. You are also advised to go through the page source in the browser,
or to identify or inspect elements using DevTools, before implementing the code.

These examples are handy for analyzing the elements and their contents in the page source:

source.find('title')           # [<title>]
source.find('title').text()   # Web Scraper Test Sites

source.find('a')                # source('a')
[<a>,….,<a.menuitm>, <a.menuitm>, <a.menuitm>, <a.menuitm.dropdown-
toggle>, <a>,………, <a>, <a.btn-menu1.install-extension>, <a.btn-menu2>,
<a>, <a>, <a>, <a>,…….,<a>, <a>, <a>]

The preceding code uses the find() method to look for the element, tag, or CSS selector provided
to it and identifies those elements. find(a) returns the list of <a> elements along with a few class
names, such as menuitm and btn-menu. After finding the elements, there are various methods,
such as text(), attr(), and html(), that return the desired content or capture the key:value
using attribute names or expressions. In the preceding case (source.find('title').text()),
text() returns the contents found in <title> tags.

https://webscraper.io/test-sites/

Scraping Using PyQuery, a jQuery-Like Library for Python92

Here, we are trying to find information in the content attribute of the <meta> tag that has a name
attribute with values of keywords and description respectively:

source.find('meta[name="keywords"]').attr('content')
web scraping, Web Scraper, Chrome extension, Crawling,
  Cross platform scraper
source.find('meta[name="description"]').attr('content')
You need to train your web scraper? We have created
  simple test sites that allow you to try all corner cases
  and proof test your scraper. Try it now.

The following code demonstrates the use of the html() function. It returns the HTML content of
the provided expression:

source.find('ul.dropdown-menu').html()
\n\t…\t\n\t…\tDocumentation\n\t….\
t\n\t….\t\n\t…\tVideo Tutorials\
n\t…\t\n\t…\t\n\t…\tHow to\n\t…\
t\n\t…\t\n\t…\tTest Sites\n\t…\t</
li>\n\t…\t\n\t…\t<a href="https://forum.webscraper.io/" target="_
blank" rel="noopener">Forum\n\t…\t\n\t\t\t\t\t\t

This technique is quite handy for identifying inner or child elements along with their attributes and
contents without using the DevTools element selector or for verifying the output from DevTools.

Important note
The class and id CSS attributes are represented with . and # respectively. For example, will be expressed as a.main and a#mainLink.

PyQuery also contains pseudo-classes or pseudo-elements that are used with expressions. These
elements begin with the : character, such as :eq(), :last, and :first. They are like predefined
constants that implement some shortcut. Most of the time, pseudo-elements are used with identified
iterable (collection) types of elements. We will cover iteration in more detail in the Iterating using
PyQuery section.

The code in the following block shows the use of PyQuery’s pseudo-elements. These elements are
similar to shortcuts, and most of the time they erase the need for iteration:

source.find('a:eq(0)').text()   # Toggle navigation
source.find('a.menuitm:first').text() # Web Scraper
source.find('a.menuitm:last').text()   # Learn
source.find('a.menuitm:eq(1)').attr('href')
/cloud-scraper

Exploring PyQuery 93

Let’s discuss a few pseudo-elements that were used in the preceding code:

•	 :eq(): Accepts an index number (and in Python, indexes start at 0). It evaluates the matched
expression and collects the text associated with it. This can also be used as source.find('a').
eq(0).text(). There are also a few elements that are similar to :eq():

	� :lt(): Accepts an index number and only returns values less than the provided index
number, for example, source.find('a:lt(2)')

	� :gt(): Accepts an index number and only returns values greater than the provided index
number, for example, source.find('a:gt(0)')

•	 :first: Returns the first occurrence of an element for the matched expression and is the
same as :eq(0).

•	 :last: Returns the last occurrence of an element for the matched expression.

There are a few more pseudo-elements, though they are a bit different from the ones listed in the
previous code block:

source.find(':input')
[<button.navbar-toggle.pull-right.collapsed>]

source.find(':header')
[<h1>, <h2.site-heading>, <h2.site-heading>, <h2.site-heading>,
<h2.site-heading>, <h2.site-heading>, <h2.site-heading>, <h2.site-
heading>]

source.find(':empty')
[<meta>, <meta>, <meta>, <meta>, <link>, <meta>, <link>, <link>,
<link>, <script>, <iframe>, <span.icon-bar.top-bar>, <span.icon-bar.
middle-bar>, <span.icon-bar.bottom-bar>, , <a>, …. <hr.test-
site-divider>, , <hr.test-site-divider>, , <hr.test-site-
divider>, , <hr.test-site-divider>, <img…. <div.clearfix>, <div.
push>,
, ,]

source.find('meta:empty')
[<meta>, <meta>, <meta>, <meta>, <meta>]

source.find(':empty:even')
[<meta>, <meta>, <link>, <link>, <link>, <iframe>, <span.icon-bar.
middle-bar>, , <div.crta>, <div.crta>, <hr.test-site-divider>,
<hr.test-site-divider>, <hr.test-site-divider>, <hr.test-site-
divider>, <hr.test-site-divider>, <hr.test-site-divider>, <hr.test-
site-divider>, <div.clearfix>,
,]

source.find(':header:odd')
[<h2.site-heading>, <h2.site-heading>, <h2.site-heading>, <h2.site-
heading>]
source.find('meta:empty:odd')   # [<meta> ,<meta>]

Scraping Using PyQuery, a jQuery-Like Library for Python94

Let’s explore the pseudo-elements that were used in the preceding code:

•	 :input: Returns all the <form> input elements or elements that receive some action, such as
<button>. source(':input') is equivalent to source.find(':input'). There is
also the <input> element in HTML, which can be expressed as source.find('input').

•	 :header: Returns the HTML header elements (<h1>,<h2>….<h6>) found.

•	 :empty: Returns all the elements that don’t have any child elements. This is helpful to check
before proceeding with the iteration of inner elements.

•	 :even: Returns all the elements that are evenly indexed. They can be used with other
pseudo-elements too. Here are two examples: source.find('meta:empty:even')
and source('meta;empty:even').

•	 :odd: Similar to :even, but returns elements that are oddly indexed.

Apart from index-related tasks, and finding elements, pseudo-elements can also be used to search for
elements with the provided text:

source.find('a:contains("Web")')
[<a.menuitm>, <a>, <a>, <a>, <a>]

source.find('a:contains("Web"):last').text()
'Web Scraper'
source.find('a:contains("Web"):last').attr('href') # '#'

As shown in the preceding code, :contains() accepts a string parameter, which is case sensitive
and returns the matching elements.

PyQuery also has some verification functions. These functions are quite effective in many circumstances
(such as updating an existing crawler) for searching for elements with attributes and confirming the
attributes’ values.

Figure 4.2 shows a block of the page source from https://webscraper.io/test-sites
with <p class="copyright">:

Figure 4.2: Page source view

https://webscraper.io/test-sites

Exploring PyQuery 95

The following code tries to confirm that the <p> element, as shown in Figure 4.2, has the class
attribute with the value copyright, and <a> inside <p.copyright> has the attribute id with
the value link:

source.find('div.row div p').is_('.copyright') # True
source.find('div.row div p').hasClass('copyright') # True
source.find('div.row div p.copyright a').is_('#link') # False

In the preceding code, we can see the use of a couple of function-type elements that are explained here:

•	 is_(): Accepts a selector as an argument and returns True or False. You can try using a
class name or class-like attribute, for example, href in <a>.

•	 hasClass(): Checks whether an expression provided has a class attribute (you pass the class
name as an argument) and returns True or False accordingly.

We have now identified and learned about a few core features of PyQuery, such as dealing with
individual elements and groups of similar elements. In the next section, we will explore iteration,
which will help us prepare for scraping content.

Iterating using PyQuery

Iterating, iteration, or looping is a task that involves repetition. During web scraping planning and
studying the format of your web content, you will come across the concept of looping many times.

In the Element traversing, attributes, and pseudo-classes section, you encountered many outputs
where, in Python lists, for example, there might be a collection of <a>, , and <meta> tags
with targeted content. If we manage to find the pattern or expression for all such collection-related
elements and iterate through them, it will be easy to manage and process the content:

[item.attr('href') for item in
    source.find('a.menuitm').items()]
['/', '/cloud-scraper', '/pricing', '#section3']

The items() method is used for iteration with PyQuery, as shown in the preceding code. In
source.find('a.menuitm').items()], <a> with the class="menuitm" attribute has
been traced with items. Iterating through items() for each a.menuitm href attribute reveals
four URLs or paths:

[item.attr('href') for item in
    source.find('a.menuitm,a[class*="btn-menu"]').items()]
['/', '/cloud-scraper', '/pricing', '#section3', 'https://chrome.
google.com/webstore/detail/web- scraper/…….?hl=en ', 'https://cloud.
webscraper.io/']

Scraping Using PyQuery, a jQuery-Like Library for Python96

In the preceding code, source.find('a.menuitm,a[class*="btn-menu"]').items()
collects elements matching the expressions a.menuitm and a[class*="btn-menu"]. Iterating
through them found items() for the href attribute; we have a total of six results.

We encountered many <meta> tags in the Element traversing, attributes, and pseudo-classes section.
Let’s collect the values of the common <meta> tag’s name and content attributes, if they are present:

meta=[]
count=0
for item in source.find('meta').items():
    if item.attr('name') and item.attr('content'):
        meta.append({'index':count,'name':item.attr('name')
            , 'content':item.attr('content')})
        count+=1

The preceding code iterates through source.find('meta').items(). For each <meta> tag
or item, a logical step has been applied to check whether both the name and content attributes
exist. If they exist, they are appended as Python dictionary or dict() objects to the meta output
list. The final meta output list looks as follows:

[{'index': 2,  'name': 'keywords',  'content': 'web scraping,Web
Scraper,Chrome extension,Crawling,Cross platform scraper'},
{'index': 3,  'name': 'description',  'content': 'You need to train
your web scraper? We have created simple test sites that allow you to
try all corner cases and proof test your scraper. Try it now.'},
{'index': 4,  'name': 'viewport',  'content': 'width=device-width,
initial-scale=1.0'}]

The output in the preceding code provides information such as the following:

•	 There are a total of five <meta> tags (indexes 0 to 4)

•	 Out of the five <meta> tags, the first and second tags either do not have both name and
content attributes or don’t have one of them

In this section, we’ve learned about deploying PyQuery features to obtain specific results and tested
techniques such as iteration and pseudo-classes. In the next section, we will learn to how implement
all the concepts from earlier chapters and the preceding sections to scrape data from the web.

Web scraping using PyQuery
This section is loaded with examples that explain how to code a web scraping script. We will be using
the PyQuery and requests libraries and dealing with HTML and XML content from the web. We
will write the data collected in these examples to CSV or JSON files.

Web scraping using PyQuery 97

Example 1 – scraping book details

In this example, we will be scraping books listed on http://books.toscrape.com in the
Childrens category (http://books.toscrape.com/catalogue/category/books/
childrens_11/index.html). This example is similar to another provided in Chapter 3, where
the lxml library was used. The code for this example is available on GitHub: https://github.
com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/
blob/main/Chapter04/example_1.ipynb.

As you can see in Figure 4.3, the Childrens category contains 29 results (a single page shows only
20 results):

Figure 4.3: Childrens category page with 29 results

Important note
You are recommended to browse the pages for the selected category using DevTools and find
the differences in URLs or content by using the element inspector tools and moving across the
page, or exploring the page source and identifying the targeted elements.

After studying the basics of processing pages and URLs, we can move on to the script. The following
code defines the required libraries, URLs, default pagination value, and an empty dataSet to collect
the data:

from pyquery import PyQuery as pq
import requests, math
siteUrl="http://books.toscrape.com/"
baseUrl=siteUrl+"catalogue/category/books/childrens_11/index.html"
pageUrl=siteUrl+"catalogue/category/books/childrens_11/page-"

http://books.toscrape.com
http://books.toscrape.com/catalogue/category/books/childrens_11/index.html
http://books.toscrape.com/catalogue/category/books/childrens_11/index.html
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/blob/main/Chapter04/example_1.ipynb
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/blob/main/Chapter04/example_1.ipynb
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/blob/main/Chapter04/example_1.ipynb

Scraping Using PyQuery, a jQuery-Like Library for Python98

dataSet=[]
page=1
totalPages=1

pageURL holds the pattern for the pagination link that is found while browsing the Childrens pages
(for example, ../page-1.html and ../page-2.html each represent a page’s URL).

With pagination loops, pageUrl is processed using requests and, finally, a PyQuery object is
generated called source:

response = requests.get(pageUrl+str(page)+".html")
source = pq(response.content)
if page==1:
    pageValues=[value.text() for value in
        source.find('form.form-horizontal strong').items()]
    if len(pageValues)>0:
        pageValues = list(map(int,pageValues)) # converts
        to int [29 1 20]
        totalPages = math.ceil(pageValues[0]/pageValues[2])
print(f"Page {page} from Total {totalPages}")

With source, we can now find the exact block of elements that we want and iterate on them for the
desired values. pageValues results in three elements, ['29','1','20'] in this case. Using
map(int,pageValues), those string pageValues results are converted to int (integer) values
and totalPages is calculated.

Using the find(), attr(), and text() PyQuery methods, the required values are traced and
finally cleaned and exploded using strip() and split():

books = source.find('article.product_pod') #book
for book in books.items():  #iterate
    image = book.find('.image_container a img').attr('src')
    rating = book.find('p.star-rating').attr('class')
        .split()
    title = book.find('h3:first a').attr('title').strip()
    url = book.find('h3:first a').attr('href')
    price = book.find('p.price_color').text().strip()
    stock = book.find('p.availability').attr('class')
        .split()

Web scraping using PyQuery 99

As shown in the following code, after collecting the desired values and cleaning and processing them,
they are finally added to dataSet as a Python dictionary:

dataSet.append({
    'name':title,
    'price':price.replace('£',''),
    'stock':stock[0],
    'rating':rating[1],
    'image':image.replace('../../../../',
        'http://books.toscrape.com/catalogue/'),
    'url':url.replace('../../../',
        'http://books.toscrape.com/catalogue/')
})

After the addition of the data to dataSet, the following code creates a childrens_books.json
file with data from dataSet using json.dump() from the json library:

import json
with open("childrens_books.json", "w") as file:
    json.dump(dataSet, file, indent=4, sort_keys=False)

For proper, indented JSON content, any code editor or text editor supporting the JSON file format
can be used.

Important note
For more information on the json library, please visit https://docs.python.org/3/
library/json.html.

In this example, we learned how to scrape data from an HTML document that exists on multiple pages,
how to handle the URLs of multiple pages, and how to maintain the items() loop. Some basic data
cleaning activities were also carried out, and finally, we created a JSON file from our collection object.
We will deal with different content formats in the next example.

Example 2 – sitemap to CSV

In this example, we will parse a sitemap or XML file, traverse through it, and generate a CSV file. The
code for this example is available on GitHub: https://github.com/PacktPublishing/
Hands-On-Web-Scraping-with-Python-Second-Edition/blob/main/Chapter04/
example_2.ipynb. The URL we are loading is https://www.schools.com/sitemap.
xml, the contents of which are shown in Figure 4.4:

https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/blob/main/Chapter04/example_2.ipynb
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/blob/main/Chapter04/example_2.ipynb
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/blob/main/Chapter04/example_2.ipynb
https://www.schools.com/sitemap.xml
https://www.schools.com/sitemap.xml

Scraping Using PyQuery, a jQuery-Like Library for Python100

Figure 4.4: sitemap.xml

The <urlset> node contains <url> child nodes, which contain children such as <loc>, <lastmod>,
<changefreq>, and <priority>. With distinct nodes in place, we will move through each child
<url> and collect their children’s information in a list and, finally, write it to a CSV file:

from pyquery import PyQuery as pq
import requests, csv
url = "https://www.schools.com/sitemap.xml"
columns=['loc','lastmod','changefreq','priority']
#Columns for CSV header

The required libraries, the url attribute, and the desired column names (columns) for the CSV
format have been declared in the code.

As shown in the following code, a PyQuery object is supplied with an additional argument of
parser='html'. This allows PyQuery to interpret the nodes and child nodes encountered in the
source page as HTML documents:

xmlFile = requests.get(url).content  #loading the url
urlXML = pq(xmlFile, parser='html')  #parser
print("Child-Length: ",urlXML.children().__len__())
Child-Length: 530

Web scraping using PyQuery 101

urlXML refers to the <urlset> node and urlXML.children() refers to the <url> child
nodes of <urlset>, which total 530.

Python provides the very useful range(start,stop,step) function. This provides us with the
difference between start and stop (0 and 530 in our code). As there are a total of 530 targeted
<url> elements, a loop has been initiated by providing the index number as eq(loop):

dataSet=[]
loops = range(0, urlXML.children().__len__())
range(start, stop)
for loop in loops:
    child = urlXML.children().eq(loop)  #0, 1, 2, 3.,.529
    dataSet.append([
        child.find('loc').text(),
        child.find('lastmod').text(),
        child.find('changefreq').text(),
        child.find('priority').text()
    ])

With the respective <url> instances identified, their <loc>, <lastmod>, <changefreq>, and
<priority> values are appended to dataSet.

The following code defines a function that is also used in Chapter 3. It accepts arguments such as data,
or in our case, the collection object, dataSet; the filename to be created; and the column list
for the first row of the CSV file (columns) as follows:

def writeto_csv(data,filename,columns):
    with open(filename,'w+',newline='',encoding="UTF-8") as
        file:
        writer = csv.DictWriter(file, fieldnames=columns)
        writer.writeheader()
        writer = csv.writer(file)
        for element in data:
            writer.writerows([element])

Scraping Using PyQuery, a jQuery-Like Library for Python102

A call to the writeto_csv(dataSet,'schoolXML.csv',columns) function with the
right arguments creates the schoolXML.csv file, as shown in Figure 4.5:

Figure 4.5: schoolXML.csv

In this example, we have collected data from XML nodes and created a CSV file. This proves to be
very useful when representing and visualizing XML parameters such as lastmod (last modified
date) and priority for a certain loc (URL or location). In the next example, we will incorporate
a few more concepts that are helpful during web scraping.

Example 3 – scraping quotes with author details

In this example, we are going to collect data or quotes from http://quotes.toscrape.com/
tag/books under the books tag. The code for this example can be found on GitHub: https://
github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-
Edition/blob/main/Chapter04/example_3.ipynb. This example deals with a few scenarios
that are a bit different from those in Example 1 – scraping book details and Example 2 – sitemap to CSV:

•	 We need to handle pagination, which is different from Example 1 – scraping book details.

•	 We need to go deeper into the individual pages or links in the listings to collect a few
additional details.

•	 There are also multiple quotes available from each author. This example deals with looping
through the same page repeatedly, which might consume memory and time.

•	 In addition, we will create separate files for authors and quotes.

The main page (http://quotes.toscrape.com/tag/books) is shown in Figure 4.6:

http://quotes.toscrape.com/tag/books
http://quotes.toscrape.com/tag/books
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/blob/main/Chapter04/example_3.ipynb
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/blob/main/Chapter04/example_3.ipynb
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/blob/main/Chapter04/example_3.ipynb
http://quotes.toscrape.com/tag/books

Web scraping using PyQuery 103

Figure 4.6: Base page to be scraped

Data related to authors (from the about link), tags, author names, and quote statements are the
main targets.

The following code shows the declaration of basic requirements, with the format of pagination URLs
to be http://quotes.toscrape.com/tag/books/page/1/ and http://quotes.
toscrape.com/tag/books/page/2/:

from pyquery import PyQuery as pq
import requests, csv
url = "http://quotes.toscrape.com/tag/books/page/"
columns=['id', 'author', 'quote', 'tags', 'quote_length',
    'born_date', 'born_location','author_url']
authorSet=dict()
dataSet=list()
page=1
nextPage=True
uid=0

Two different types of collection objects (dictionaries and lists) are also defined (authorSet and
dataSet), along with some default values carrying variables.

In the following code, while (nextPage) initiates the loop, and the value of nextPage is
now True:

while (nextPage):
    response = requests.get(url+str(page))
    source = pq(response.content)
    if source.find('ul.pager li.next a:contains("Next")'):

Scraping Using PyQuery, a jQuery-Like Library for Python104

        nextPage=True
    else:
        nextPage=False

While browsing through the pages, we did find the URL pattern, but there is no mention of how
many total quotes are available. This restricts us to calculating values such as the final page number
or the total number of pages to maintain the loop. To do this, we have used the nextPage Boolean
variable, which is always True if the browsed page contains the text Next. If the browsed page does
not have the text Next, then we assume that the browsed page is the final page and maintain the loop
accordingly by updating nextPage to False. Maintaining the loop is always a priority and needs
to be checked while browsing each page.

The following code iterates on the class attribute value quote and collects the required data with
some basic data-cleaning activities:

for quotes in source.find('.quote').items():
    quote = quotes.find('[itemprop="text"]').text().strip()
    author = quotes.find('[itemprop="author"]').text()
        .strip()
    tags = quotes.find('[itemprop="keywords"]')
        .attr('content').strip()
    authorUrl = quotes.find('a[href*="/author/"]')
        .attr('href')

In each iteration over quote, authorUrl is collected. During the preliminary study, we found that
there are a few different quotes from the same author on the page.

As we have to browse each authorUrl encountered, some system resources are wasted when
loading duplicate URLs, and even in the final output, duplicate values will be available. To deal with
this situation, we must verify whether authorUrl has been accessed or not.

The following code inserts the formatted value of author (author name) or authorKey in authorSet:

if authorUrl:
    authorKey = author.replace('.','_').replace(' ','_')
        .strip()

if authorUrl and authorKey not in authorSet.keys():
    authorUrl = "http://quotes.toscrape.com"+authorUrl
    source_author = pq(requests.get(authorUrl).content)
    bornDate = source_author.find('.author-born-date')
        .text()
    bornLocation = source_author
        .find('.author-born-location').text()
            .replace('in','').strip()

Web scraping using PyQuery 105

    authorSet[authorKey]={
        'name':author,
        'url':authorUrl,
        'date':bornDate,
        'location':bornLocation
    }
else:
    print(f"Author ({authorKey}) details already found!")

Python dictionaries do not allow duplicate keys. We are implementing the same logical step to restrict
possible duplication.

Important note
Detecting and removing duplicate values from any dataset is a key activity in web scraping.
Developers often use some unique values for data (randomly generated or using a pattern),
store them in files (log or temp files) or database tables, and compare them each time with the
next record to pass or fail the final insertion steps.

In the preceding code, if authorUrl and authorKey not in authorSet.keys():
verifies that authorUrl is there but authorKey has not already been processed and added to
authorSet. This condition enables us to load a unique authorUrl string and access the author
detail page, as shown in Figure 4.7:

Figure 4.7: Author page for Mark Twain

Scraping Using PyQuery, a jQuery-Like Library for Python106

Important note
Targeting only required values and unique values and cleaning and formatting the data before
inserting it into its final destination (files, database tables, or cloud storage) will help the quality
analysis (QA) and data analysis processes a lot. These processes, also known as data verification,
are among the basic steps to take with a dataset before carrying out machine learning (ML)
and data visualization, and exploratory data analysis (EDA) helps us to find out how much
data verification is required.

These activities are often forwarded to the QA team to find issues (duplicate, missing, and
unformatted data) in the dataset or for preprocessing (finding duplicates, cleaning, and
formatting) the dataset.

After browsing the author detail page and collecting data on individual quotes, the desired, cleaned
values are appended to dataSet:

dataSet.append ([
    uid,
    author,
    quote,
    tags.replace(',','|'),
    len(quote),
    authorSet[authorKey]['date'],
    authorSet[authorKey]['location'],
    authorSet[authorKey]['url']
])
page+=1  # continue with pagination value

After looping through all pages
writeto_csv(dataSet,'quotes.csv',columns)

After collecting all the data and progressing through all the pages, the dataSet content is finally
written to a CSV file, as shown in Figure 4.8, using the writeto_csv() function, as described in
Example 2 – sitemap to CSV:

Figure 4.8: Output (quotes.csv)

Summary 107

As defined in the following code, we are also exporting the author details from authorSet to a
JSON file (quotes_author.json) using the json library:

import json
Writing Dictionary authorSet to JSON file using json.dump()
with open("quotes_author.json", "w") as file:
    json.dump(authorSet, file, indent=4, sort_keys=False)

The final output of the JSON file will look as shown in Figure 4.9:

Figure 4.9: JSON data (quotes_author.json)

In this section, we used some scraping techniques to extract the desired content from a website.
Content identification on the web and a preliminary study before scraping is compulsory and is based
on the structure of the website. Libraries such as PyQuery provide the necessary tools and techniques
to scrape effectively and efficiently.

Summary
In this chapter, we explored and learned about PyQuery, applying various scraping techniques with
examples. Short, simple code that is easy to deal with is always in demand, and PyQuery provides
and assists with this. PyQuery supports CSS selectors and its applicability across various markup
documents is one of its major advantages.

Scraping Using PyQuery, a jQuery-Like Library for Python108

In the next chapter, we will learn more about web scraping techniques and some new Python libraries.

Further reading
•	 PyQuery, a jQuery-like library for Python: https://pyquery.readthedocs.io/

en/latest/

•	 jQuery: https://jquery.com/

•	 CSS:

	� https://www.w3.org/Style/CSS/Overview.en.html

	� https://developer.mozilla.org/en-US/docs/Web/CSS

•	 CSS selectors:

	� https://www.w3schools.com/css/css_selectors.asp

	� https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors

•	 JSON: https://developer.mozilla.org/en-US/docs/Learn/JavaScript/
Objects/JSON

•	 Sitemaps: https://sitemaps.org/

https://pyquery.readthedocs.io/en/latest/
https://pyquery.readthedocs.io/en/latest/
https://jquery.com/
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/JSON
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/JSON
https://sitemaps.org/

5
Scraping the Web with Scrapy

and Beautiful Soup

In previous chapters, we learned about web scraping-related technologies, data-finding techniques,
and using various Python libraries to scrape data from the web.

In this chapter, we will explore and learn practically about two popular Python libraries, Scrapy and
Beautiful Soup. Scrapy is a web crawling framework for Python and provides a project-oriented scope
for web scraping. Beautiful Soup, on the other hand, deals with document or content parsing. Parsing
a document is normally done to effectively traverse and extract content. Apart from this, both libraries
are heavily loaded with DOM-related features.

In particular, we will learn about the following topics in this chapter:

•	 Web parsing using Python

•	 Web scraping using Beautiful Soup

•	 Web scraping using Scrapy

•	 Deploying a web crawler

Technical requirements
A web browser (Google Chrome or Mozilla Firefox) will be required and we will be using Python
notebooks for the code using JupyterLab.

Please refer to the Setting things up and Creating a virtual environment sections in Chapter 2 to continue
setting up and using the environment created.

The Python libraries that are required for this chapter are as follows:

•	 lxml

•	 urllib

Scraping the Web with Scrapy and Beautiful Soup110

•	 requests

•	 html5lib

•	 beautifulsoup4

•	 scrapy

The code files for this chapter are available online on GitHub: https://github.com/
PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/
tree/main/Chapter05

Web parsing using Python
In earlier chapters (in both the explanations and code examples), we learned that web scraping is
a procedure for extracting data from websites, as per our requirements and choice. Data collection
can be smooth and error-free from a coding perspective with the use of some Python libraries, but
still, identifying content and traversing through elements (individual or nested) are required, at a
minimum, to carry out the task.

To ensure high-quality data is collected, the content on the web must be complete and error-free.
We use CSS or XPath-based expressions in the DOM structure. If the DOM’s structure is somehow
imperfect or it contains bugs, such as incomplete tags, missing closing tags, or spelling errors in tags,
then the code expressions and query paths that are deployed will not be directed to the original nodes
or elements of the DOM. This will lead to the extraction of incomplete or unnecessary content, which
might then require extra tasks, such as data cleaning or preprocessing, or even rejecting the data as
it does not comply with the schema or data verification rules.

Web parsing, or more precisely web document (such as HTML or XML) parsing, refers to the activity
of breaking down, exposing, or identifying components such as elements, nodes, or HTML tags in
content. Web parsing is done to structure web content and overcome the issue of unstructured data
elements in web content. Parsing is important because it makes it easier to traverse, search, and collect
information from the desired elements. Using effective parsers (tools used to parse) on web content
makes the scraping task more efficient and trouble-free.

While dealing with lxml in Chapter 3 and pyquery in Chapter 4, we used the default parser provided
by the libraries. In Chapter 3, we also used a special parser to parse robots.txt.

Important note
lxml is still used widely in Python because of its various DOM-based features. It is the default
parser and has memory-efficient features and collaborates with other libraries. For more
information on lxml, visit https://lxml.de/index.html.

https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/tree/main/Chapter05
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/tree/main/Chapter05
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/tree/main/Chapter05
https://lxml.de/index.html

Web parsing using Python 111

In Python programming, the task of web-based document parsing is mostly carried out by Beautiful
Soup, also known as the bs4 Python library. In the next section, we will explore this topic further.

Introducing Beautiful Soup

Beautiful Soup is the Python parsing library for dealing with HTML and XML documents. It generates
a parsed tree similar to that of the Python lxml library (using attributes and classes such as lxml.
etree and ElementTree), which is further used to traverse, search, and identify elements to
extract data and scrape the web.

Beautiful Soup provides the same parsing-related features that are available using the lxml and
html5lib libraries. Large, simple, and easy-to-use methods and properties are available to deal
with DOM-related activities in Beautiful Soup.

A few distinguishing features of Beautiful Soup over other Python libraries are listed here:

•	 It can parse documents with broken, incomplete, misspelled, or missing tags.

•	 Unlike other parsers, it allows handling duplicate and multi-valued attributes.

•	 Specific selected portions or sections of the content can also be parsed, saving memory and time.

•	 Document-based encoding is handled automatically. Encoding details can also be provided to
the Beautiful Soup constructor.

For more detailed information about Beautiful Soup, please visit the official documentation at
https://www.crummy.com/software/BeautifulSoup/bs4/doc/. Now that we
have been introduced to Beautiful Soup in this section, we will install and further explore it in the
upcoming sections.

Installing Beautiful Soup

Please refer to the Technical requirements section in this chapter, and the https://www.crummy.
com/software/BeautifulSoup/bs4/doc/#installing-beautiful-soup link to
install Beautiful Soup.

As seen in Figure 5.1, pip install beautifulsoup4 installs or updates the bs4 library and
its dependent libraries, such as soupsieve:

Figure 5.1: Installing Beautiful Soup

https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#installing-beautiful-soup
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#installing-beautiful-soup

Scraping the Web with Scrapy and Beautiful Soup112

Let’s verify the installation and version of bs4 (the complete code is available on GitHub: https://
github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-
Edition/blob/main/Chapter05/bs4_setup.ipynb):

import bs4
bs4.__version__         # 4.11.1
dir(bs4)
['BeautifulSoup', 'BeautifulStoneSoup', 'CData', 'Comment',
'Counter', 'DEFAULT_OUTPUT_ENCODING', 'Declaration', 'Doctype',…,
'SoupStrainer', 'StopParsing', 'Stylesheet', 'Tag',…, '__version__',
'_s', '_soup', 'builder', 'builder_registry', 'dammit', 'element',
'formatter', 'os', 're', 'sys', 'traceback', 'warnings']

The preceding code imports bs4 (Beautiful Soup), prints its version information, which is 4.11.1,
and explores bs4. We can see in the output that there are a few important classes available, such as
BeautifulSoup and SoupStrainer.

In this section, we have installed Beautiful Soup and verified its installation along with its version
information. In the next section, we will explore various features of Beautiful Soup.

Exploring Beautiful Soup

We will now explore a few select, important features and classes in Beautiful Soup, also known as the
bs4 Python library. Activities such as parsing web documents and using Beautiful Soup for traversing,
searching, and iterating will be covered in this section.

In carrying out parsing and using the features of bs4, we will be using the BeautifulSoup and
SoupStrainer classes to target certain sections or elements of web documents:

from bs4 import BeautifulSoup as BSoup
from bs4 import SoupStrainer

As seen in the preceding code, the BeautifulSoup and SoupStrainer classes are imported
from bs4. In the next section, we will demonstrate parsing using bs4.

Parsing

As discussed in previous sections, parsing is an activity that rectifies errors in content. Using a parser
is always recommended to obtain similar results from web content across platforms and systems. Also,
we need to plan for or be ready to accept that the project will take longer than usual due to parsing
when using BeautifulSoup.

HTML content or code blocks will be passed to BeautifulSoup, also known as the BSoup
constructor, along with the selected parser or a parser similar to BSoup (that can be a string or HTML
parser). If no parser is specified, the system will use the default HTML parser, which is usually lxml.

https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/blob/main/Chapter05/bs4_setup.ipynb
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/blob/main/Chapter05/bs4_setup.ipynb
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/blob/main/Chapter05/bs4_setup.ipynb

Web parsing using Python 113

Normally, two types of parsers are supported by BeautifulSoup:

•	 Type of markup: html, xml, and html5

•	 Name of parser library: lxml, html5lib, and html.parser (lxml and html5lib must
be installed to be used; html.parser is a built-in HTML parser)

Important note
lxml is recommended as the best parser to be used with BeautifulSoup, because of its
memory and speed. html5lib is usually the second preference, but the parsed output can
also be used to determine the preference of the parser to be used based on the content or
DOM requirements.

It’s also to be noted that the parsed tree (output) or parsed content generated will differ based on the
parser used. To demonstrate parsing, here, a markup variable with an incomplete error code has
been declared:

markup = "<a></p></p>"

The following code uses the default parser for markup:

BSoup(markup)   # <html><body><a></body></html>

The html.parser parser has been used and only <a> has been parsed; the </p> HTML tag has
not been returned from the markup string variable:

BSoup(markup,"html.parser")    # <a>

The lxml parser and the default parser outputs look similar:

BSoup(markup,"lxml")   # <html><body><a></body></html>

The html5lib parser seems to provide more detailed information in comparison to other parsers,
such as lxml and html.parser:

BSoup(markup,"html5lib")
<html><head></head><body><a><p></p><p></p></body>
  </html>

All incomplete tags have been listed in the output, and the complete HTML structure (<html>,
<head>, <body>) has also been maintained.

Scraping the Web with Scrapy and Beautiful Soup114

markup is HTML code, but parsing it with xml generates XML output with a single node, <a/>:

BSoup(markup,"xml")
<?xml version="1.0" encoding="utf-8"?>
<a/>

The BeautifulSoup constructor also accepts a third argument, parse_only, which is used
with an object from SoupStrainer. The SoupStrainer class targets a part of the documents.
This option is quite handy when the document is quite large and we want to shift focus to a particular
section, saving processing time and memory. For more information on SoupStrainer, please
visit https://www.crummy.com/software/BeautifulSoup/bs4/doc/index.
html#soupstrainer.

The following code uses an HTML string, to be parsed using lxml and html.parser, but targeting
only <a> from the HTML string. Both lines of the following code result in the output <a>:

BSoup("<p><a></p>", 'lxml',
    parse_only=SoupStrainer("a"))
BSoup("<p><a></p>",'html.parser',
    parse_only=SoupStrainer("a"))

As seen in the following code, the only difference is the parser used, which in this case is html5lib:

BSoup("<p><a></p>", 'html5lib',
    parse_only=SoupStrainer("a"))

Using html5lib results in the output <html><head></head><body><p><a></p></
body></html>, and the warning “UserWarning: You provided a value for parse_only, but the
html5lib tree builder doesn’t support parse_only. The entire document will be parsed.”. Therefore,
html5lib is not effective when used with SoupStrainer.

With this basic introduction to parsing and using various parsers, we will now move on to deploy
bs4 for searching, traversing, and iterating through the parsed tree, looking for elements, in the
upcoming section.

Searching, traversing, and iterating

We can find plenty of methods and properties to traverse and search elements when using Beautiful Soup.
An important feature of Beautiful Soup is its easy-to-use and large collection of DOM-based features.

To demonstrate and learn about the advanced features of Beautiful Soup along with some examples, we
will be using the HTML content seen in Figure 5.2 (the file is also available on GitHub at https://
github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-
Edition/blob/main/Chapter05/bs4_traverse.ipynb):

https://www.crummy.com/software/BeautifulSoup/bs4/doc/index.html#soupstrainer
https://www.crummy.com/software/BeautifulSoup/bs4/doc/index.html#soupstrainer
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/blob/main/Chapter05/bs4_traverse.ipynb
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/blob/main/Chapter05/bs4_traverse.ipynb
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/blob/main/Chapter05/bs4_traverse.ipynb

Web parsing using Python 115

Figure 5.2: HTML source

The following code imports the bs4 and re (Python regex, or regular expression) libraries:

from bs4 import BeautifulSoup as BSoup
import re          # regex
html = open("testHTML.html","r").read()  # html file
soup = BSoup(html) # default parser

HTML content, as seen in Figure 5.2, is loaded with the designated path and converted into a soup
object from the BeautifulSoup library using the default parser.

With the bs4 soup object, now we can further process the DOM or HTML content. The HTML
content we are dealing with can be singular or nested. Individual elements can be accessed in the
same way as accessing attributes, as seen in the following code:

soup.a  # <a class="sister" href="http://example.com/elsie"
          id="link1">Elsie
soup.h1 # <h1>Secret agents</h1>

soup.a is similar to soup.find('a'); it finds the first <a> element by default and displays the
complete HTML (text and attributes) of that element.

Plenty of elements have various, or at least a single, attributes. Element attributes are important
resources as they provide identification of the content.

In the following code, some of the major functions and attributes of the soup object are used:

soup.a.attrs
{'href': 'http://example.com/elsie', 'class': ['sister'],
  'id': 'link1'}

Scraping the Web with Scrapy and Beautiful Soup116

soup.a.has_attr('class')      # True
soup.a.has_attr('name')       # False
soup.a.get('class')          # ['sister']
soup.a.get('href')     # 'http://example.com/elsie'

A brief explanation of the functions and attributes used in the preceding code is listed here:

•	 attrs: Lists all the attributes of any element found

•	 has_attr(): Accepts the attribute name as an argument to check whether it exists; returns
a Boolean (true/false) answer upon searching the query

•	 get(): Accepts the attribute name as an argument and returns the value of the provided attribute

A string value or content from any element can be retrieved using text and string attributes, as
well as the get_text() function, as used in the following code:

soup.a.text          # Elsie
soup.a.get_text()    # Elsie
soup.a.string        # Elsie

Here, we explored individual elements with their attributes. In the following section, we will be
searching for elements.

find()

The soup object also supports the find() method, which returns a single result as per the arguments
provided. If there’s no result, then find() returns None.

In the following code, various forms of find() have been displayed, identifying or selecting <a>
by default, with the output <a class="sister" href="http://example.com/elsie"
id="link1">Elsie:

soup.find('a')
soup.find('a',string="Elsie")
soup.find('a',{'id':"link1"})
soup.find('a',"sister")
soup.find("a",attrs={'class':'sister'},text="Elsie")

Let’s try to understand the various forms of find(), as listed here:

•	 find('a'): Finds the first <a> available.

•	 find('a',string="Elsie"): Finds the first <a> that has the string value Elsie.

•	 find('a',{'id':"link1"}): Finds the first <a> that has the id attribute with the
value link1.

Web parsing using Python 117

•	 find('a',"sister"): Finds the default <a> that has a class with the value
sister. This is the same as find('a',attrs={'class':"sister"})
and find('a',{'class':"sister"}).

•	 find("a",attrs={'class':'sister'},text="Elsie"): Finds the first <a> that
has the text value Elsie and also possesses an attribute named class with the value sister.

The examples coming up show some common and distinguishing uses of find().

In the following code, the element is searched by default, which results in its content, including
its child elements, being returned:

soup.find('ul')#
<li data-id="10784">Jason Walters, 003: Found dead in "A
    View to a Kill".
<li data-id="97865">Alex …."Goldeneye".
<li data-id="45732">James Bond, 007: The main man; shaken
    but not stirred.

As seen in the following code, find() has been used for concatenation. The code searches
and then finds (the first child of that is found):

soup.find('ul').find('li')
<li data-id="10784">Jason Walters, 003: Found dead in "A
  View to a Kill".

The following code uses an extra filter option while finding by mentioning its data-id attribute
and revealing its content using the get_text() method:

soup.find('ul').find('li',attrs={'data-id':'97865'})
    .get_text()
'Alex Trevelyan, 006: Agent turned ….. nemesis in
  "Goldeneye".'

We dealt with single-element searching in this section. Now, we will learn how to find all matching
elements in the next section.

find_all()

The soup object also contains the find_all() method, which returns one or more results, or an
empty list() object if the query doesn’t match.

Scraping the Web with Scrapy and Beautiful Soup118

The following code block uses the find_all() method along with the main parameters:

soup.find_all('a') # soup("a")
soup.find_all('a',attrs={'id':re.compile(r"link")})
soup.find_all('a',attrs={'href':re.compile(r".*ie$")})
soup.find_all("a",text=re.compile(r".*ie$"))

The preceding code, using the soup find_all() method, results in the following output:

[<a class="sister" href="http://example.com/elsie"
    id="link1">Elsie,
<a class="sister" href="http://example.com/lacie"
    id="link2">Lacie,
<a class="sister" href="http://example.com/tillie"
    id="link3">Tillie]

Let’s try to understand the various aspects of the code using find_all():

•	 find_all('a'): Finds all <a> elements. This code is similar to soup("a"), find_
all('a','sister'), and find_all('a',{'class':'sister'}).

•	 find_all('a',attrs={'id':re.compile(r"link")}): Here, the re Python library
has been used, to match the <a> element with the pattern found in the value of the id attribute,
which contains the text link. Similarly, a regex pattern can be matched on values of the href
attribute that end with the characters ie with find_all('a',attrs={'href':re.
compile(r".*ie$")}).

•	 find_all("a",text=re.compile(r".*ie$")): Similar to regex matched on
attributes (id or href), a pattern can also be formed among text arguments that end with
the characters ie.

The upcoming examples in this section show some extra features using find_all().

The following code returns a list of the <a> and <title> elements:

soup.find_all(['a','title'])
[<title>The Dormouse's story</title>,
<a class="sister" href="http://example.com/elsie"
    id="link1">Elsie,
<a class="sister" href="http://example.com/lacie"
    id="link2">Lacie,
<a class="sister" href="http://example.com/tillie"
    id="link3">Tillie]

Web parsing using Python 119

The following code finds all <p> elements that have the class attribute with the title or story value:

soup.find_all("p",attrs={'class':["title","story"]})
[<p class="title">The Dormouse's story</p>,
<p class="story">Once upon a time there were three little
sisters; …
<a class="sister" href="http://example.com/elsie"
    id="link1">Elsie,
<a class="sister" href="http://example.com/lacie"
    id="link2">Lacie …
<a class="sister" href="http://example.com/tillie"
    id="link3">Tillie;
…. well. </p>,
<p class="story">...</p>]

find_all() also supports limiting the results by using the limit argument, as shown here:

soup.find_all('a',limit=2)
[<a class="sister" href="http://example.com/elsie"
  id="link1">Elsie,
<a class="sister" href="http://example.com/lacie"
    id="link2">Lacie]

As seen in the preceding example, only two <a> elements are returned.

Important note
CSS selectors can also be used with BeautifulSoup objects. There are two methods that
allow the use of CSS selectors with bs4: select(), which is similar to find_all(), and
select_one(), which is similar to find(). For more information, please visit https://
www.crummy.com/software/BeautifulSoup/bs4/doc/#css-selectors.

We looked at searching for elements in this section, which can also be used for the purpose of iteration
(please refer to the Iteration section). In the next section, we will cover a combination of searching
and traversing along DOM content.

next_element and previous_element

Traversing along a DOM is quite effective when moving back and forth between an element. It is achieved
using next_element and previous_element. next_elements and previous_elements
can also be used to return multiple elements. Before we start to understand traversing, understanding
the concept of the parsed tree, or DOM tree, is very important. The DOM tree normally reveals the
HTML code structure, parent-child tag combinations, and nested or chained tags.

https://www.crummy.com/software/BeautifulSoup/bs4/doc/#css-selectors
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#css-selectors

Scraping the Web with Scrapy and Beautiful Soup120

The following code shows the use of next_element. While traversing along a DOM (normally
from top to bottom), various elements can be found with next_element:

soup.find('p','story').next_element
'Once upon a time there were three little sisters; and
  their names were\n  '

soup.find('p','story').next_element.next_element
<a class="sister" href="http://example.com/elsie"
  id="link1">Elsie

Let us understand the details of the preceding code:

•	 find('p','story').next_element: Searches for a <p> element for the story value
in class, and points to the next element. Here, the next element after <p class="story">
is the text itself, as seen in the preceding code output.

•	 find('p','story').next_element.next_element: Points to the <a> child
element with the text Elsie.

previous_element is similar to next_element, but the direction of traversing is reversed.

The following code shows the use of previous_element, which can be extended or chained:

soup.find('b').previous_element
<p class="title">The Dormouse's story</p>

soup.find('li',{'data-id':'45732'}).previous_element
    .previous_element
'Alex Trevelyan, 006: Agent turned terrorist leader;
  James\'... in "Goldeneye".'

Regarding the preceding code, let us understand a few details:

•	 find('b').previous_element: There’s only one element in the HTML content
inside <p>, so it returns the element at previous_element or <p class="title">

•	 find('li',{'data-id':'45732'}).previous_element.previous_element:
With <li data-id="45732">, we find that the previous element is <li data-
id="97865">, hence we get the text

The next_element and previous_element attributes can be chained, as seen in the preceding code.

We have explored a lot regarding searching and traversing so far in this section. The next section
demonstrates performing iteration.

Web scraping using Beautiful Soup 121

Iteration

We have already come across the concept of iteration in previous sections. For example, find_all(),
next_elements, and previous_elements result in one or more elements, where a loop can
be used.

The following code iterates on the child elements of the elements, which are using
find_all(), and uses the name attribute to show the element name:

for li in soup.ul.find_all('li'):
    text = li.get_text().strip()
    print(f"{li.name} : {li.get('data-id')} :
        ({len(text)}) - {text}")

Similarly, the get_text() function returns the text string of an element, and the get('data-id')
function returns the values of the data-id attribute. Printing all those return values with their text
lengths, the output looks as follows:

li : 10784 : (53) - Jason Walters, 003: Found dead in "A
    View to a Kill".
li : 97865 : (82) - Alex Trevelyan, 006: …; James' nemesis
    in "Goldeneye".
li : 45732 : (54) - James Bond, 007: The main man; shaken
    but not stirred.

Various alternate mechanisms exist to perform iteration and the extraction process.

In this and previous sections, we explored the main concepts related to BeautifulSoup. We will
scrape content using BeautifulSoup in the upcoming section.

Important note
BeautifulSoup has various other methods related to the find activity, such as find_all_
next, find_next, and find_previous_siblings, to deal with parent-child and
traversing-related instances. There have been updates to the names and supporting arguments
of methods in bs4. For the complete and updated documentation, please visit https://
www.crummy.com/software/BeautifulSoup/bs4/doc/.

Web scraping using Beautiful Soup
In this section, we will build and execute a web crawler using Beautiful Soup. To set things up, we have
chosen to scrape quotes from http://quotes.toscrape.com. Specifically, we will be scraping
from the page http://quotes.toscrape.com/tag/inspirational, as seen in Figure 5.3:

https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
http://quotes.toscrape.com
http://quotes.toscrape.com/tag/inspirational

Scraping the Web with Scrapy and Beautiful Soup122

Figure 5.3: Category “inspirational”

The example we are dealing with is similar to Example 3 – scraping quotes with author details in Chapter 4.
Only the links and compositions have changed, by carrying out a few additional logical steps. The
code for the example can be found on GitHub: https://github.com/PacktPublishing/
Hands-On-Web-Scraping-with-Python-Second-Edition/blob/main/Chapter05/
bs4_scraping.ipynb.

The following code declares the paginated link as url, and columns contains a column header for
the CSV file to be generated:

url = "http://quotes.toscrape.com/tag/inspirational/page/"
columns=['id','author','quote','tags','quote_length',
    'born_date','born_location','author_url']

Inside the paginated loop, a response from url has been collected and provided to BSoup to be
parsed with the default parser:

response = requests.get(url+str(page))
source = BSoup(response.content)
    if source.find('ul','pager').find('li','next'):
        txtNext = source.find('ul','pager')
            .find('li','next').find('a').get_text()

txtNext holds the value for the next page.

https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/blob/main/Chapter05/bs4_scraping.ipynb
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/blob/main/Chapter05/bs4_scraping.ipynb
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/blob/main/Chapter05/bs4_scraping.ipynb

Web scraping using Beautiful Soup 123

As seen in the following code, the nextPage pagination variable is controlled based on the "Next"
string if it exists for txtNext:

if txtNext and
re.findall(r".*(Next).*",txtNext)[0]=="Next":
    nextPage=True

Multiple variables, such as quote, author, and tags, are created with the content available from
iterating <div> with the quote class value:

for quotes in source.find_all('div','quote'):
    quote = quotes.find(attrs={'itemprop':'text'})
        .get_text().strip()
    author = quotes.find(attrs={'class':'author'})
        .get_text().strip()
    tags = quotes.find(attrs={'itemprop':'keywords'})
        .get('content').strip()
    authorUrl = quotes.find(href=re.compile(r"/author/"))
        .get('href')

Similarly to the quote-based information, a unique authorUrl string has been identified and its
content is parsed to collect author-related information, such as bornDate and bornLocation:

if authorUrl and authorKey not in authorSet.keys():
    authorUrl = "http://quotes.toscrape.com"+authorUrl
    source_author = BSoup(requests.get(authorUrl).content)
    bornDate = source_author.find(attrs=
        {'class':'author-born-date'}).get_text().strip()
    bornLocation = source_author.find(attrs=
        {'class':'author-born-location'}).get_text()
            .replace('in','').strip()

Finally, author-related information is collected in authorSet, and dataSet holds quote and
author details:

    authorSet[authorKey]={
        'name':author,
        'url':authorUrl,
        'date':bornDate,
        'location':bornLocation
    }
    dataSet.append([
        uid,
        author,
        quote,

Scraping the Web with Scrapy and Beautiful Soup124

        tags.replace(',','|'),
        len(quote),
        authorSet[authorKey]['date'],
        authorSet[authorKey]['location'],
        authorSet[authorKey]['url']
    ])

The collected set of information (author, quote, tags, and a few more) is finally written into JSON
(quotes_author_inspirational.json) and CSV (quotes_inspirational.csv)
files, as seen in Figure 5.4:

Figure 5.4: CSV data from the inspirational category

Important note
BeautifulSoup also supports CSS selectors, and there is a short, small crawler available
as an example in the GitHub repository: https://github.com/PacktPublishing/
Hands-On-Web-Scraping-with-Python-Second-Edition/blob/main/
Chapter05/bs4_scraping_css_select.ipynb.

In this section, we have developed Beautiful Soup-based crawlers and extracted data into files. In the
next section, we will learn about the Python scrapy library and develop a crawler using it.

Web scraping using Scrapy
We have learned about, explored, and used different Python libraries for web scraping in the current
and previous chapters. Scrapy is one of the few open source web crawling frameworks written in
Python that allows dynamic adaptation, a project-based scope, and modular extensibility for web
scraping tasks.

https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/blob/main/Chapter05/bs4_scraping_css_select.ipynb
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/blob/main/Chapter05/bs4_scraping_css_select.ipynb
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/blob/main/Chapter05/bs4_scraping_css_select.ipynb

Web scraping using Scrapy 125

As per Scrapy’s official website, https://scrapy.org/, it is simple, fast, collaborative, and yet
extensible. Scrapy was previously maintained by Scrapinghub, but now it is maintained by Zyte
(https://www.zyte.com/) and some other contributors.

Listed here are a few important features that make Scrapy popular and make it stand out among the
Python web crawling frameworks:

•	 Built-in support for parsing, traversing, XPath, CSS selectors, and regex

•	 Handles HTTP requests and responses using built-in libraries

•	 Modular structure and components allow developers to focus on a specific task and manage
coding collaboratively

•	 Provides a Command-Line Interface (CLI) to deal with the project, data exporting, managing
the database, and much more

•	 Plenty of middleware and extensions are available, which allows for the easy processing of
cookies, sessions, authentication, robots.txt, project log, usage statistics, emails, and much more

To begin trying out some scraping tasks using Scrapy, let’s install it in the preset environment using
pip, as seen in Figure 5.5, or follow the instructions at https://docs.scrapy.org/en/
latest/intro/install.html:

Figure 5.5: Scrapy installation

After this basic introduction to and successful installation of Scrapy in the system, next, we are going
to set up a project.

Setting up a project

Scrapy, as mentioned in the preceding section, provides a command-line tool, scrapy. This tool
is loaded with plenty of commands that help with setting up the project and data extraction-related
activities. The code is available on GitHub: https://github.com/PacktPublishing/
Hands-On-Web-Scraping-with-Python-Second-Edition/tree/main/Chapter05/
bookScrapy.

https://scrapy.org/
https://www.zyte.com/
https://docs.scrapy.org/en/latest/intro/install.html
https://docs.scrapy.org/en/latest/intro/install.html
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/tree/main/Chapter05/bookScrapy
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/tree/main/Chapter05/bookScrapy
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/tree/main/Chapter05/bookScrapy

Scraping the Web with Scrapy and Beautiful Soup126

Developing a crawler with scrapy is detailed in the following steps:

1.	 Scrape the http://books.toscrape.com site for all book details across all pages.

2.	 For each book, extract fields such as title, price, rating, stock, url, and image.

3.	 After collecting the URL or book link in step 2, navigate to it.

4.	 Parse fields such as category, upc, and no_review (number of reviews).

5.	 Repeat steps 2, 3, and 4 for all books, and parse through all the pages available.

6.	 Export all the collected data to JSON and CSV files.

To create a project, we can use the scrapy startproject projectname projectfolder
or scrapy startproject books bookScrapy commands.These commands will create a
project named books inside the bookScrapy folder, as seen in Figure 5.6:

Figure 5.6: scrapy startproject

Inside the bookScrapy folder, scrapy also creates a books subfolder and a scrapy.cfg
configuration file. The scrapy.cfg file contains default project-related settings. These settings
can be updated as per the crawler’s needs. Please refer to https://docs.scrapy.org/en/
latest/topics/commands.html for more details.

After the successful creation of the project folder (bookScrapy), as seen in Figure 5.7, we need to
create a spider script:

Figure 5.7: scrapy genspider

http://books.toscrape.com
https://docs.scrapy.org/en/latest/topics/commands.html
https://docs.scrapy.org/en/latest/topics/commands.html

Web scraping using Scrapy 127

The scrapy genspider booklist books.toscrape.com command creates a spider
named booklist.py inside the bookScrapy\books\spiders subfolder, with books.
toscrape.com set for the allowed_domains argument:

import scrapy
class BooklistSpider(scrapy.Spider):
    name = "booklist"
    allowed_domains = ["books.toscrape.com"]
    start_urls = ["http://books.toscrape.com/"]
    def parse(self, response):

As seen in the preceding code, the newly created booklist.py spider contains the default code.
To develop a crawler, we have to implement the necessary code and logic in the booklist.py file
using parse(). The bookScrapy\books folder also contains a few additional files: items.
py, middlewares.py, pipelines.py, and settings.py, along with the spiders folder.

Important note
Spider is a Python class file that contains code used for scraping and data collection logic.
Multiple spider classes can exist targeting specific scraping activities. The spider class is used in
the crawling process. Commands such as scrapy list and scrapy list spider list
the spiders of a project. Please visit https://docs.scrapy.org/en/latest/intro/
tutorial.html?highlight=Spider#our-first-spider for more information.

Each of these files has its own control and implementation over the final crawler. The following are
brief explanations of these files:

•	 items.py: An item is like a Python dictionary that holds keys and values (column and
value). For more details, visit https://docs.scrapy.org/en/latest/topics/
items.html.

•	 pipelines.py: After collecting data, scraped items are sent to the pipeline to perform
additional actions, such as cleaning and dropping. For more details, please visit https://
docs.scrapy.org/en/latest/topics/item-pipeline.html.

•	 settings.py: Project-related settings can be controlled and added. For more details, please
visit https://docs.scrapy.org/en/latest/topics/settings.html.

•	 middlewares.py: We can specify some hooks or extensions that can perform additional
tasks with spiders (processing inputs and output). Visit https://docs.scrapy.org/
en/latest/topics/spider-middleware.html for more details.

https://docs.scrapy.org/en/latest/intro/tutorial.html?highlight=Spider#our-first-spider
https://docs.scrapy.org/en/latest/intro/tutorial.html?highlight=Spider#our-first-spider
https://docs.scrapy.org/en/latest/topics/items.html
https://docs.scrapy.org/en/latest/topics/items.html
https://docs.scrapy.org/en/latest/topics/item-pipeline.html
https://docs.scrapy.org/en/latest/topics/item-pipeline.html
https://docs.scrapy.org/en/latest/topics/settings.html
https://docs.scrapy.org/en/latest/topics/spider-middleware.html
https://docs.scrapy.org/en/latest/topics/spider-middleware.html

Scraping the Web with Scrapy and Beautiful Soup128

Important note
Dealing with or updating the files we just mentioned is not compulsory. These files are there
to implement a full-fledged crawling project, by allowing users to use the in-depth facilities
and variations provided by Scrapy.

We now have the project and default spider files ready to begin coding or further processing. In the
next section, we will be dealing with scrapy.Item using the items.py file.

Creating an item

An item is normally understood as a column name or key for a dictionary object that is used to
collect values to implement in the spider. The items.py file contains a default class that implements
scrapy.Item. This class (BooksItem) is generated during the processing of the scrapy
startproject command.

The following code block explores the BooksItem item class with a scrapy.Field() type of
object associated with it:

import scrapy
class BooksItem(scrapy.Item):    # define the fields for
your item here like:
    title = scrapy.Field()
    no_review = scrapy.Field()
    …..
    url = scrapy.Field()
    image = scrapy.Field()

As per our crawler plan, items.py will contain the default object of scrapy.Field(). These
fields will get their values from the spider or spiders\booklist.py, as we’ll discover in the
next section.

Implementing the spider

With the planning and collection of items ready, we will implement the spider to use items.py
and further proceed with the code implementation. The code is available on GitHub: https://
github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-
Edition/blob/main/Chapter05/bookScrapy/books/spiders/booklist.py.

Crawling-related logic and code is provided by the parse() function, which is present in booklist.
py, as follows:

def parse(self, response):
    listings =
        response.xpath("//article[@class='product_pod']")

https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/blob/main/Chapter05/bookScrapy/books/spiders/booklist.py
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/blob/main/Chapter05/bookScrapy/books/spiders/booklist.py
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/blob/main/Chapter05/bookScrapy/books/spiders/booklist.py

Web scraping using Scrapy 129

        #root
    nextPage = response.xpath
        ("//ul[@class='pager']/li[@class='next']/a/@href")
    for listing in listings:

The preceding code identifies listings from http://books.toscrape.com and will iterate
using XPath. A link for the new page, nextPage, has also been parsed. Both CSS selectors and XPath
expressions are available to use with response (HTTP response to start_urls).

As seen in the following code, the Python BooksItem class from items.py, which has the column
object, has been created and identified or planned fields are being parsed and added to column:

column = BooksItem() # from books.items import BooksItem
column['title'] = listing.xpath
    (".//h3/a/@title[normalize-space()]").extract_first()
column['url'] =
    listing.xpath(".//h3/a/@href").extract_first().strip()
….
yield response.follow
    ('http://books.toscrape.com/catalogue/'+column['url'],
        callback=self.parse_page, meta={'column':column})

To parse the detail listing page using the link made available by column['url'], Scrapy provides
the follow() function, which links to the parse function to deal with (parse_page) as a callback,
and the items collected are added to the BooksItem class’s column object.

The following code implements loop-based logic and the parse() call function each time a link to
the next page is available:

if nextPage:
    nextPage =
        'http://books.toscrape.com/catalogue/'+nextPage
    yield scrapy.Request(nextPage, callback=self.parse)

This spider (booklist) created can be executed using the scrapy crawl booklist command.
It lists lots of logs, such as elapsed time and dates.

With the spider ready to process or crawl, we will export data in the next section.

Exporting data

The scrapy command has made exporting data to files very easy. We can use these commands:

•	 scrapy crawl booklist –o bookRecords.csv

•	 scrapy crawl booklist –o bookRecords.json

http://books.toscrape.com

Scraping the Web with Scrapy and Beautiful Soup130

These commands execute the booklist spider and export scraped data items as column or
BooksItem to CSV and JSON. These files will be available in the project folder or inside bookScrapy.

We have created a Scrapy-based crawler. Now, we will try to deploy this crawler on Zyte (https://
app.zyte.com/), and use its live features in the next section.

Deploying a web crawler
We have successfully implemented a crawler and extracted and exported data to external files using
Scrapy (with the help of the scrapy CLI tool). This process has been done on a local machine or
Personal Computer (PC). Deploying a crawler online or on a server is the only option for most
developers. The deployed crawler benefits from multiple features of the server (such as having access
anytime and anywhere, speed, and ample storage), as well as its dynamic nature.

We can choose any cloud platform, web hosting server, or internet-based service to upload our code
and execute it. Most of these services are not 100% free; we have to pay a certain amount for the
desired configuration and services.

Scrapy, from the beginning, has been famous for its architecture. There were and are still multiple
web-based platforms that allow users to run their Scrapy-based projects. One of these is Scrapinghub
(now Zyte). Zyte Scrapy Cloud (https://www.zyte.com/scrapy-cloud/) provides many
free additional infrastructures for Scrapy and other projects.

Important note
Web services and platforms such as https://apify.com/apify/scrapy-executor
and https://scrapeops.io/ can be found on the web. Some provide limited resources,
while others provide additional services (proxies, additional RAM and storage, schedulers,
exporting options, databases, and more).

Let’s follow a few steps to move ahead with deploying our Scrapy-based spider on Zyte:

1.	 Register for an account at https://app.zyte.com/.

2.	 After registration and login, the system will route us to a default dashboard. The dashboard
will list multiple projects that exist and is loaded with plenty of other features.

3.	 We need to create a project first, so click on Create Project and provide a project name, for
example, BooksToScrape.

https://app.zyte.com/
https://app.zyte.com/
https://apify.com/apify/scrapy-executor
https://scrapeops.io/
https://app.zyte.com/

Deploying a web crawler 131

4.	 As the project is created, Zyte will route you to the Deploy section, or you can choose the
option from the menu. Here, we have to specify how we are going to load the project to app.
zyte.com. Multiple options are available, as seen in Figure 5.8:

Figure 5.8: Code & Deploy – Scrapy option

5.	 As per the instructions found under SCRAPY from step 4, we will install shub using pip
install shub, login, and deploy with the code shown in Figure 5.9. A successful
installation and login will create an API key, provide the deployment ID (638593), and add
a few files, such as scrapinghub.yml and setup.py, to the project folder:

Figure 5.9: shub (install, deploy)

http://app.zyte.com
http://app.zyte.com

Scraping the Web with Scrapy and Beautiful Soup132

6.	 Step 5 will load the deployed code or project as jobs that will be available to execute, run,
schedule, and many more options under Jobs Dashboard, as seen in Figure 5.10:

Figure 5.10: Listing jobs and Spider links

7.	 Step 6 shows that 1 spider exists. Click on the spider, which will take you to Spider Details,
and provide some information on the spider. We now can run the spider by clicking the Run
option from Jobs Dashboard, and then on Spider Details.

8.	 You can verify that the run was successful by clicking on the spider name (booklist) in the
Completed, Deleted, Running, and Next sections, as seen in Figure 5.11:

Figure 5.11: Spider jobs completed

9.	 As seen in Figure 5.11, details such as Items, Requests, Runtime, and Errors are also available
and can be clicked on for a more detailed investigation. Figure 5.12 shows us the information
under Items:

Deploying a web crawler 133

Figure 5.12: Job Items (loading Item 0 or the first item)

10.	 There are multiple options, such as Download, Exporting to Files (CSV, JSON, XML),
Filtering, Dataset Publishing, and Samples, that are available under the Jobs Items section,
as seen in Figure 5.12.

With the steps mentioned, we successfully deployed our Scrapy project to app.zyte.com and
extracted the details as per the code available in the spider (booklist).

Important note
It’s also advisable that you test the crawler on your local machine for any exceptions and
errors that might occur, testing all features (such as running the crawler and exporting data)
and using the latest libraries (if possible). Regarding deployment or any issues in Zyte, please
visit https://support.zyte.com.

In this section, we focused on the deployment of our crawler in the server.

http://app.zyte.com
https://support.zyte.com

Scraping the Web with Scrapy and Beautiful Soup134

Summary
In this chapter, we explored and learned about parsing and extracting data from the web using
Beautiful Soup and Scrapy.

So far, in this book, we have identified many libraries and techniques that are effective and suitable for
web scraping. Beautiful Soup equips developers with a handful of features to parse, traverse, and create
a crawler. Scrapy provides the same features as Beautiful Soup and can be used for data extraction,
but is more of a project-based framework that uses lots of libraries behind the scenes and enables you
to focus only on your tasks. Because of Scrapy’s easy-to-implement and collaborative architecture, it’s
quite popular among beginners, professionals, and even web-based service providers such as Zyte,
ScrapeOps, and Apify.

In the next chapter, we will learn about and explore more scraping techniques and security-related issues.

Further reading
•	 Beautiful Soup: https://www.crummy.com/software/BeautifulSoup/bs4/doc/

•	 lxml – XML and HTML with Python: https://lxml.de/

•	 Web crawlers:

	� https://www.cloudflare.com/en-gb/learning/bots/what-is-a-web-
crawler/

	� https://research.aimultiple.com/web-crawler/

•	 Web scraping: https://www.zyte.com/learn/

•	 robots.txt: https://www.robotstxt.org/robotstxt.html

•	 Scrapy Cloud: https://www.zyte.com/scrapy-cloud/

•	 Scrapy: https://docs.scrapy.org/en/latest/index.html

https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://lxml.de/
https://www.cloudflare.com/en-gb/learning/bots/what-is-a-web-crawler/
https://www.cloudflare.com/en-gb/learning/bots/what-is-a-web-crawler/
https://research.aimultiple.com/web-crawler/
https://www.zyte.com/learn/
https://www.robotstxt.org/robotstxt.html
https://www.zyte.com/scrapy-cloud/
https://docs.scrapy.org/en/latest/index.html

Part 3:
Advanced Scraping

Concepts

In this part, you will learn how to work with secure or security-enabled websites. You will learn to
scrape data from web APIs and use browser automation tools such as Selenium to bypass certain
imposed security. There are practical examples across the chapters in this part, which will help you
to extract data from PDF files and even unstructured formats using regular expressions.

This part contains the following chapters:

•	 Chapter 6, Working with the Secure Web

•	 Chapter 7, Data Extraction Using Web APIs

•	 Chapter 8, Using Selenium to Scrape the Web

•	 Chapter 9, Using Regular Expressions and PDFs

6
Working with the Secure Web

So far, we have learned about the web, web content, reverse-engineering techniques, data-finding
techniques, a few Python libraries, and a framework that we can employ to access and scrape the
desired web content.

Plenty of security-related concerns exist on web platforms today, along with measures to ensure
security. Lots of web applications, extensions, and even web-based service providers exist to protect
us and our web-based systems against unauthenticated usage and unauthorized access.

The growing use of internet applications and e-commerce activity demands a secure web (or web-based
security-enabled features) as a high priority to deal with actions that are harmful or even illegal. We
often receive irrelevant emails or spam, containing information that we did not ask for.

It’s quite challenging from a web scraping perspective to deal with such issues, but the concept of ethical
hacking makes it more viable, even from an application and security perspective. We will cover a few
basic concepts that deal with security on the web and proceed to look at web scraping.

In this chapter, we will learn about the following topics:

•	 Exploring secure web content

•	 HTML <form> processing using Python

•	 User authentication and cookies

•	 Using proxies

Technical requirements
A web browser (Google Chrome or Mozilla Firefox) will be required, and we will also use JupyterLab
for Python code.

Please refer to the Setting things up and Creating a virtual environment sections in Chapter 2 to continue
using the environment created.

Working with the Secure Web138

The Python libraries that are required for this chapter are as follows:

•	 requests

•	 pyquery

The code files for this chapter are available online in this book’s GitHub repository: https://
github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-
Edition/tree/main/Chapter06.

Exploring secure web content
Today’s web and internet technologies are quite vulnerable in terms of web security (content, authorization,
illegal access, and so on). We want the web to be safe and the content that we browse, search, or view
to be genuine, not violating any legal or ethical standards or affecting people’s human rights.

The web must be accessible and available to everyone who seeks information, effectively and by
following ethical practices. We often encounter web content that is not exactly what we were looking
for, or hear of web content that has been tampered with or hacked into or that private and sensitive
information has been leaked illegally, and so on. Although a lot of these cases are beyond our control,
we can reduce vulnerabilities and make the web a much safer place to be.

In many new technologies, security-related concerns have been identified and solutions have been
implemented. There are even applications and organizations concerned with network-based security,
which are growing in demand and using the security enabled technologies. In government departments,
developers use up-to-date technologies to make the web a safer place. With such improvements in
technology, scraping and crawling are getting more challenging. Web scraping, or extracting the
information available on the web, is not harmful when ethical concerns are taken into account.

In the upcoming sections, we will introduce some basic security-related concepts that can be implemented
and are easily available on the web, and then explore, implement, and access them using Python.

Form processing

Form or HTML <form> processing, also known as form handling, is used in most cases to pass or
submit collected or user-provided data to a backend or server. There are plenty of cases of web-based
forms (such as login, contact us, registration, and subscription forms) being submitted by someone
impersonating someone else.

From a user perspective, a form is simply a data collector that has some <form> elements, such as
<select>, <option>, <textarea>, and <input>, asking for some input or values. When data
is provided, it gets validated at some level and is processed by the server or concerned system, and
any necessary further action takes place (such as user login, user registration, resetting a forgotten
password, QR processing, and image validation).

https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/tree/main/Chapter06
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/tree/main/Chapter06
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/tree/main/Chapter06

Exploring secure web content 139

Even from a user security perspective, when forms are used to deal with personal or private information
with banks, e-commerce sites, and so on, some security-related measures are embedded in or linked
to forms, such as providing a One-Time Password (OTP) via SMS or email or asking the user to fill
in human-readable (but challenging) CAPTCHAs. Blocking or denying someone access to the web
for some time or period if incorrect details have been submitted after multiple attempts is a common
security measure on the web.

HTML forms use a dedicated HTTP method (GET, POST, PUT, and so on) and path to process
submitted information. In addition to the available content in forms, they also contain some hidden
fields (<input type="hidden" …..>) that are not visible in the browser but contain some
values (such as page identification, system variables, third-party code, marketing-analysis IDs, user
IDs, and security). There can be one or more of these fields and they can be found through the page
source or using DevTools.

Important note
Form data submitted using the GET method is visible in the URL as a “key-value” pair. Please
visit the Implementing HTTP methods section of Chapter 2 or https://developer.
mozilla.org/en-US/docs/Web/HTTP/Methods for more information on HTTP
methods and https://developer.mozilla.org/en-US/docs/Web/HTML/
Element/form for information on HTML forms. For more information on DevTools, visit
the Using web browser development tools section of Chapter 3.

HTML forms are an effective way to transfer or share information on the web or across web pages.
Now that we have given you a basic introduction to HTML <form> processing in this section, we
will explore cookies and sessions in the next section.

Cookies and sessions

Cookies and sessions are two web-based buzzwords that most users associate with web-related security.
They are mostly used for online privacy, imposing restrictions, filtering content, and preventing
identity theft on websites. Nowadays, most websites even ask users to accept or deny cookies while
browsing them.

Important note
We briefly discussed obtaining and locating cookies and sessions in the Data-finding techniques
used in web pages section of Chapter 1 and the URL handling and operations section of Chapter 2.

Cookies

Cookies are pieces of information created by websites. The created information exists as a key-value
pair, similar to a JSON string or a Python dictionary, which is stored in text format on a user’s Personal
Computer (PC) or machine.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/form
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/form

Working with the Secure Web140

Generally, a cookie is a secure piece of information generated by a website. It identifies and saves a
user’s profile and their machine details, browser details, login credentials, browsing habits, searched
keywords, and similar information.

This collected information and data is used to verify the user, log them in directly, and redirect to or
present them with pages or locations of interest on their next visit to the website. Hence, information
inside cookies acts somewhat like shortcut options or a memory-related tool that recognizes and
remembers user actions and preferences.

There are various types of cookies; a few of the important ones are listed here:

•	 Persistent: Also known as a first-party cookie, this kind of cookie tracks and remembers a
user’s actions, preferences, and choices and presents those pages or choices on the user’s next
visit to the website. They also have a long expiration date and stay active for a long period of
time, until they are deleted or expire. These cookies also contain information regarding the
domain; in this case of first-party cookie, it is the parent domain that was visited.

•	 Session: In comparison to a persistent or first-party cookie, this is a temporary type of memory
that remembers user activity. The session contains encrypted information that is stored on a
server, identifying the client. As soon as a browsed website is closed or a user leaves a website,
the session-based information is deleted.

•	 Third-party: Also known as tracking cookies, the original domain for this kind of cookie
might not be the domain itself. They contain third-party domains or API URLs. These cookies
normally collect information on a client’s online behavior, searched terms, URLs visited, and so
on. This collected information is then used to display customized advertisements, marketing
popups, and so on.

Cookies normally contain different key:value pairs for various aspects; we will explore this in later
chapters with practical examples. They also contain an expiration date that destroys the collected
information after some time. This time might vary from a few minutes to a month or more. Most of
the time, the information inside cookies is essential to bypass some web-based securities, and from
a scraping perspective, it is necessary to have such information and manage or modify (by including
cookies) an HTTP request accordingly.

With this information on cookies and their types, we will explore sessions in the next section.

Sessions

A session is used to maintain secure activity – for example, a user being identified through their
profile across different pages of some website. A session, as explained in an earlier section, is a type
of temporary memory that gets destroyed when a browser is closed.

Sessions are properties that enforce and share security identification between two or more systems.
This could be an encrypted value or ID (unique identification values) generated on behalf of the user

Exploring secure web content 141

(such as the machine, profile, or stored information on a server). Such IDs are used to identify and
track user-related behavior, and they get updated every time a session ends.

In Figure 6.1, we can see certain rows that possess session-related names (such as _gh_sess and
user_session) with the corresponding columns for Value, Domain, Expires / Max-Age, Priority,
and so on:

Figure 6.1: Session-related information in cookies

Since information will be stored on a server and sharing or identifying information between a client
and server is necessary, a cookie is the best place to store information. Session-related information
is stored in cookies and is supplied to desired or accessed web pages, maintaining a stable and
authenticated state.

Important note
Note that we can deny a website from storing information in cookies by refusing to accept the
cookies, or even deleting stored cookies using the browser or DevTools. For more information
on cookies and sessions, please visit https://www.aboutcookies.org, https://
developer.mozilla.org/en-US/docs/web/HTTP/Cookies, and https://
securiti.ai/blog/session-cookies/.

So far in this section, we have presented some basic concepts of cookies and sessions. In the next
section, we will talk about user authentication and using different types of web-based security measures.

User authentication

Authentication or web-based user authentication is a process related to the handling and managing
of user identification. This is often a combined process where HTML form processing and cookie-
related information and activities need to be used.

User login or registration is done using HTML form processing. The information collected is stored and
inserted into backend databases or secure files. Nowadays, Two-Factor Authentication (2FA) is often
used across the web. Normally, registered users are verified and permitted to log in or out of a system,
validating their username and password while also solving some CAPTCHAs. This whole process is

https://www.aboutcookies.org
https://developer.mozilla.org/en-US/docs/web/HTTP/Cookies
https://developer.mozilla.org/en-US/docs/web/HTTP/Cookies
https://securiti.ai/blog/session-cookies/
https://securiti.ai/blog/session-cookies/

Working with the Secure Web142

known as Single-Factor Authentication (SFA). Conversely, 2FA imposes additional verification on
top of SFA, which involves the following:

•	 Sending an activation code or OTP to a cell phone (through a message or app) or email address

•	 Sending a secure one-time clickable link for verification (login, a forgotten password, updating
information, and so on) to a registered email address or cell phone (through an app or message)

These authentication processes need a combination of HTML form processing, within some preconfigured
or allocated time, and some secure identification IDs or a key:value pair that manages the session or
session management, cookies, and so on, helping to complete the authentication process.

Now that you have been introduced to the basics of authentication, in the next section, we will deal
with security and authentication-related web-based cases using the Python programming language.

HTML <form> processing using Python
Form processing has various titles and functions, such as search, filter, login, registration, submission,
and verification. In this section, we will explore http://quotes.toscrape.com/search.
aspx, as shown in Figure 6.2, and process or use the forms available on the page to extract or filter
out the results, based on a choice of options (Author or Tag):

Figure 6.2: The search form (Author and Tag)

Important note
We need to investigate the available <form> tag, the options or form elements that exist, and
the resulting pages as they appear on form submission. It’s also advisable to explore form-
related actions using DevTools, as this will help you to understand the flow of systems, links,
availability, and resources such as HTTP headers, cookies, and payload.

http://quotes.toscrape.com/search.aspx
http://quotes.toscrape.com/search.aspx

HTML <form> processing using Python 143

During page analysis, we found that only a single form, named filterform, exists, and options
are available for the Author name only; Tag doesn’t have any options. Tag-related options are loaded
dynamically if we select the Author option (http://quotes.toscrape.com/filter.aspx
gets executed using the HTTP POST method and loads the options for Tag), and the final search results
are loaded under http://quotes.toscrape.com/filter.aspx using HTTP POST, when
both the Author and Tag options are chosen, and the submit button (Search) is pressed or clicked.

To initiate form-based activity through code, we have to identify and list the URLs that are used
or loaded:

baseUrl="http://quotes.toscrape.com/search.aspx"
POST URL: Tag and result.
filterUrl="http://quotes.toscrape.com/filter.aspx"

Let’s break down this <form> processing step by step and capture the final result:

1.	 During analysis, we noticed that only the Author option was listed and the form is submitted
automatically when we choose any option for Author. An HTTP POST request is processed
with the payload, as shown in Figure 6.3:

Figure 6.3: HTTP POST (payload and form data)

http://quotes.toscrape.com/filter.aspx
http://quotes.toscrape.com/filter.aspx

Working with the Secure Web144

2.	 From step 1, it’s clear that we need to have at least three values (author, tag, and __
VIEWSTATE); they are collected and processed with the following code:

author = response.find('select#author option:gt(0)')
    .attr('value')  # 'Albert Einstein'
tag = response.find('select#tag option').attr('value')
search = response.find('input[name="submit_button"]')
    .attr('value')  #'Search'

viewState = response.find('form[name="filterform"]
   input#__VIEWSTATE').attr('value')
formData={'author':author, 'tag':tag,
    '__VIEWSTATE':viewState}  # Payload info
process internal URL: filterUrl to load Tag option

responseA = requests.post(filterUrl, data=formData)
POST request
tag = responseTag.find('select#tag option:gt(0)')
    .attr('value')    # change

Important note
__VIEWSTATE or viewState is a unique, random value that is generated by websites to
identify individual states of a page, which are often found as hidden <input> values. This
<form> value exists in most websites that use ASP.NET technologies. The viewState value
is used on the client side, and it preserves or retains the value of <form> elements, alongside
page identity. For more details on ASP.NET-based form management, please visit https://
www.c-sharpcorner.com/article/Asp-Net-state-management-techniques.

filterUrl with the http://quotes.toscrape.com/filter.aspx value is an
internal URL that is processed as soon as there is a change or selection within the Author
option, and also during final result loading. Direct access to filterUrl will result in a 405
HTTP status code (Method Not Allowed). For more details on HTTP status codes, please
visit https://developer.mozilla.org/en-US/docs/web/HTTP/Status.

3.	 Continuing from step 2, as Author is selected, Tag options are listed. As shown in Figure 6.4,
we have now selected the option for Tag (change) and have submitted the form button with
the text Search. This submission results in some changes to Form Data under Payload, as
shown in Figure 6.4:

https://www.c-sharpcorner.com/article/Asp-Net-state-management-techniques
https://www.c-sharpcorner.com/article/Asp-Net-state-management-techniques
http://quotes.toscrape.com/filter.aspx
https://developer.mozilla.org/en-US/docs/web/HTTP/Status

HTML <form> processing using Python 145

Figure 6.4: HTTP POST (Payload and Form Data) during submission

So, for the results, we need values such as author, tag, submit_button, and __
VIEWSTATE. Submitting these values as form data to filterUrl will load and update
<div class="results"> with the quote element, as shown in the following code:

finalFormData={ 'author':author, 'tag':tag,
    'submit_button':search, '__VIEWSTATE':viewState}
    # payload

responseB = requests.post(filterUrl,
    data=finalFormData)   # HTTP POST filterUrl

responseFinal = pq(responseB.content)
result = responseFinal.find('.results .quote').text()
result
'"The world as we have created it is a process of
  our thinking. It cannot be changed without changing
  our thinking." - Albert Einstein (change)'

Working with the Secure Web146

The results will be listed as seen in Figure 6.5:

Figure 6.5: Result after form submission (with Author and Tag)

There might be one or multiple results, as seen in Figure 6.5. The result is found in the <div
class="quote"> element, as seen in the following code:

<div class="results">……
  <div class="quote">
    "The world as we have
      created it is a process of our thinking. It
      cannot be changed without changing our
      thinking." -
    Albert Einstein
      (change)
  </div>
</div>

If there are multiple results, then multiple instances of <div class="quote"> might exist,
and we need to extract those results accordingly.

4.	 We can repeat steps 1-3 for different Author and Tag values.

From these steps, it’s clear that <form> processing is an important concept that requires proper planning
and analysis. We successfully managed and processed a multi-step type of form, loaded with hidden
elements. The complete code for this example can be found on GitHub: https://github.com/
PacktPublishing/Hands-On-web-Scraping-with-Python-Second-Edition/
blob/main/Chapter06/chapter06_htmlform.ipynb.

In the next section, we will look at the authentication (user login and logout) process.

https://github.com/PacktPublishing/Hands-On-web-Scraping-with-Python-Second-Edition/blob/main/Chapter06/chapter06_htmlform.ipynb
https://github.com/PacktPublishing/Hands-On-web-Scraping-with-Python-Second-Edition/blob/main/Chapter06/chapter06_htmlform.ipynb
https://github.com/PacktPublishing/Hands-On-web-Scraping-with-Python-Second-Edition/blob/main/Chapter06/chapter06_htmlform.ipynb

User authentication and cookies 147

User authentication and cookies
User authentication (managing and handling user credentials) is another form of web security. In this
section, we will use the user authentication feature available on the http://quotes.toscrape.
com/login site, along with cookies.

As seen in Figure 6.6, http://quotes.toscrape.com/login contains a page with the Login
text, and a form asking for Username and Password:

Figure 6.6: User login page

Analyzing the page source, there’s only a single <form> element found, with one hidden input
element named csrf_token, two text input elements with type="text" (username and
password), and finally, an object with the submit type and the value Login, as seen in Figure 6.7:

Figure 6.7: Login page – <form> source code

http://quotes.toscrape.com/login
http://quotes.toscrape.com/login
http://quotes.toscrape.com/login

Working with the Secure Web148

Important note
http://toscrape.com is a demo site, enriched with content for scraping-related
purposes. The site does not provide a user registration link. To practice authentication, we
can use any credentials for the username and password. Successful login loads http://
quotes.toscrape.com with a user logout option, or we can use the http://quotes.
toscrape.com/logout link.

As seen in the following code, the required links are defined. We now need to collect form-related
data from the HTML form available at loginUrl (as seen in Figure 6.7):

import requests
from pyquery import PyQuery as pq
baseUrl="http://quotes.toscrape.com/"   # main URL
loginUrl="http://quotes.toscrape.com/login" # POST URL (Credentials
and results)

logoutUrl="http://quotes.toscrape.com/logout"

To process the login step, we have the necessary URLs already declared. In the following code, we
have defined the user and passw variables with some test values. These two values are there to
be submitted in the payload. loginUrl has been processed, and we have collected the values for
csrf_token, username, and password:

user = "test"
passw = "password"
html = requests.get(loginUrl)  # load loginUrl
response = pq(html.content)  
collect <form> data,required for submission

csrf = response.find('form:first input[name="csrf_token"]')
    .attr('value')
username = response.find('input[id="username"]')
    .attr('name')
password = response.find('input[id="password"]')
    .attr('name')

With the form data in hand, payload information is to be created: payload = {"csrf_
token":csrf, username:user, password:passw}. This payload will be submitted to the
path mentioned in the form attribute named action or loginUrl, in this case. Upon investigation
(using DevTools), it looks like loginUrl is processed with payload when the form is submitted,
but it gets redirected (as seen in Figure 6.8) to baseUrl, loading the link for logoutUrl:

http://toscrape.com
http://quotes.toscrape.com
http://quotes.toscrape.com

User authentication and cookies 149

Figure 6.8: HTTP status code 302

Important note
The original URL produces a Status Code: 302 Found error and gets redirected to another
URL. For more information, please visit https://developer.mozilla.org/en-US/
docs/web/HTTP/Status/302.

As seen in the following code block, the required payload dictionary object with all information
found and confirmed using DevTools is posted to loginUrl. On submitting the form as conveyed
by Figure 6.8, redirection must happen, but it (postHTML.url) is still showing loginUrl:

payload = {"csrf_token":csrf, username:user,
    password:passw}

postHTML = requests.post(loginUrl, data=payload)
postHTML.url
http://quotes.toscrape.com/login

For the current scenario, there must be either a problem with the payload or some code-related error.
Upon conducting multiple attempts and verifications, it is found that the code processed so far has
no issues but the POST request is also looking for session-related data that is available in the cookies
to be submitted.

As seen in Figure 6.8, we can see that the Request Headers tab has an entry for Cookie with some
session-related values. We are required to collect the HTTP headers and cookies too for successful
form processing. For details on HTTP headers and cookies, please refer to the URL handling and
operations section of Chapter 2.

https://developer.mozilla.org/en-US/docs/web/HTTP/Status/302
https://developer.mozilla.org/en-US/docs/web/HTTP/Status/302

Working with the Secure Web150

To progress with the authentication part, as seen in Figure 6.9, html.headers outputs the HTTP
request headers:

Figure 6.9: Collecting HTTP headers and desired values

We are trying to collect the value of Set-Cookie (html.headers['Set-Cookie']) from
the returned headers data.

As seen in the following code, the Python requests library supports various parameters, such as
data and headers:

payload = {"csrf_token":csrf, username:user,
    password:passw}

postHTML = requests.post(
    loginUrl,
    data=payload,
    headers={'Cookie':html.headers['Set-Cookie']}
    )    # POST request

postHTML.url      # http://quotes.toscrape.com/
verify =
    pq(postHTML.content).find('a[href="/logout"]').text()
    # Logout

The HTML POST request to loginUrl with the headers={'Cookie':html.headers['Set-
Cookie']} parameter seems to be working now, which shows the redirected URL, http://quotes.
toscrape.com, and we can also find the URL for logging out (verify) there. The complete code
for user authentication can be found on GitHub: https://github.com/PacktPublishing/
Hands-On-web-Scraping-with-Python-Second-Edition/blob/main/Chapter06/
chapter06_authentication.ipynb.

The authentication process has been completed successfully, with the help of cookies and sessions. It’s
the ethical duty of the user to log out from a session after the completion of any task. requests.
get(logoutUrl) simply terminates the existing user session.

http://quotes.toscrape.com
http://quotes.toscrape.com
https://github.com/PacktPublishing/Hands-On-web-Scraping-with-Python-Second-Edition/blob/main/Chapter06/chapter06_authentication.ipynb
https://github.com/PacktPublishing/Hands-On-web-Scraping-with-Python-Second-Edition/blob/main/Chapter06/chapter06_authentication.ipynb
https://github.com/PacktPublishing/Hands-On-web-Scraping-with-Python-Second-Edition/blob/main/Chapter06/chapter06_authentication.ipynb

Using proxies 151

Important note
It’s also an important factor to consider that, in the current case, only the Cookie header
value was sufficient for successful form submission. There are plenty of other keys inside HTTP
headers (such as Accept, Origin, Host, and User-Agent) that are also important and
must be passed along with HTTP GET or POST parameters for successful form submission.

Apart from the form elements, HTTP headers and cookie values do play a significant role in form
submission, and even in receiving the expected response from the processed link. In the next section,
we will introduce and learn how to use the HTTP proxy.

Using proxies
A proxy (HTTP proxy or web proxy) is considered middleware for the web. A proxy is a gateway that
is used to communicate between a client and a server. Put simply, a proxy is an Internet Protocol
(IP) address with some random ports assigned to it. On the web, an HTTP request starts from the
client end with its own IP, which, when routed through the proxy, gets updated as a new IP and is
then forwarded to the actual destination looking for a response. So, a proxy here works as a transport
layer that resides between the client and the server or destination.

On the internet, there are plenty of services (paid and free) offered by various organizations providing
proxies that work as a filter layer for their customers and deal with different kinds of security-related
threats, malware, content filtering, spy protection, and many other activities. There are plenty of
benefits to using proxies; a few of them are listed here:

•	 Privacy: The destination server does not identify the actual client. Privacy issues are mitigated
as the client has initiated a request using the web proxy.

•	 Security: With privacy in mind, client information is not shared with the end location, which
is the server. Security features are implemented, such as blocking the scope of multiple related
requests and blocking and blacklisting the IP for a certain duration.

•	 Content filter: Along with security and privacy, the proxy server or middle parties act as
middleware between the client and server. In this process, middle parties can act as a secure
layer that filters out content to the client based on some preconfigured settings. For example,
parents can use settings regarding the content that’s being delivered to their child (based on age,
movie certificates, and many more factors). In addition, such a facility provides security to the
end user against malware, spyware, geo-location-related spam, and anything that is detected
as harmful or could be harmful to the client machine.

•	 Speed: Most proxy providers use their servers to accept client requests and perform a task on
their behalf. These servers also possess in-built cache management systems that transfer the
content immediately back to the client if it already exists in the cache. This speeds up the time
taken for requests and the response cycle.

Working with the Secure Web152

Using proxies or involving them in scraping tasks or projects is considered a performance enhancer
and is used to tackle or bypass web-related security measures (such as CAPTCHAs), IP blockage,
geo-location barriers (some sites, for example, US-based government or organization sites demand
a US IP; otherwise, access to the site is denied), and plenty more.

An HTTP proxy hides the client IP address from the server. For example, when the client IP address
192.168.0.1 passes or uses a proxy, it is converted to 11.xyz.4x.y2, or something similar, which then
forwards the request to the server. In this case, the server identifies that the request is coming from
11.xyz.4x.y2 and not 192.168.0.1.

In the User authentication and cookies section, we came across the need for HTTP headers in making
requests. Web proxies are used to generate random HTTP headers (combining different header
keys, such as User-Agent, Accept, Origin, and Referer), which, when processed, act like
an entirely new request to the server, and the proxies completes the associated tasks successfully
(most of the time).

Important note
It’s a widely accepted fact among developers that forwarding a random combination of HTTP
headers, with or without proxies, to HTTP requests will work most of the time as it will bypass
certain web-based imposed restrictions.

From a scraping perspective, proxies are mostly divided into two types:

•	 Residential proxy: These are considered the best, safest, and most reliable among the proxy
types. These are most often the IP addresses of real devices, which are difficult to detect as
fake IPs or proxy addresses. The server or end user’s machine generally treats requests from
such proxies as being genuine and does not promptly respond with security measures. These
are very costly in comparison to other types of proxies, and many providers put conditions in
place, such as limits on the number of attempts, the usage per hour or per day, and the total
consumption of bandwidth.

•	 Rotating or rotational proxy: A rotating proxy, sometimes also known as a data center proxy,
is normally considered to be a group of various types of proxies (residential, shared, public, freely
available, and many more). If any address is blocked, then some other address is forwarded. The
server or end machine will treat the request as new and from a different client, which bypasses
certain restrictions. Because plenty of proxy types are mixed, the chances of a device being
recognized by the server as an agent or proxy are not high for this type.

Using proxies 153

Important note
There are various types of proxies. Here are a few links for more information:

-https://developer.mozilla.org/en-US/docs/web/HTTP/Proxy_servers_
and_tunneling

-https://blog.apify.com/types-of-proxies/

-https://www.zyte.com/blog/python-requests-proxy/

-https://smartproxy.com/proxies

-https://scrapfly.io/blog/how-to-rotate-proxies-in-web-scraping/

-https://www.webscrapingapi.com/best-shared-dedicated-proxy-
providers

Plenty of proxy providers can be found easily via a Google search (https://www.google.
com/search?q=web+proxy+provider).

Freely available or shared proxies found on the web are not recommended or safe to use.

Depending on the type of proxy, we can find the IP from proxy providers, and collect and use the
proxies while making HTTP requests. In addition, many providers ask you to register and pay to
receive an API key, which can be used to make HTTP requests.

The following code displays an example, with demo links, of how a proxy can be obtained and used
to make HTTP requests and progress the task at hand:

import requests, random
from pyquery import PyQuery
urlA = "https://www.somewebsite.com"   # demo URL
urlB = "http://www.anotherdomain.io"   # demo URL
proxyPool = ["3.168.X.X", "104.X.X.12", "107.194.X.X",
    "202.45.X.X"]  # demo
proxyAPI =
    "https://www.someprovider.com/proxy?key=API_KEY"
    # demo

Proxy providers generally provide their clients with some IP addresses or API URLs from a list of
IPs, or a single IP (which can be used for a certain duration) is provided. proxyPool returns a list
of available IPs, whereas proxyAPI returns a proxy upon being called.

https://developer.mozilla.org/en-US/docs/web/HTTP/Proxy_servers_and_tunneling
https://developer.mozilla.org/en-US/docs/web/HTTP/Proxy_servers_and_tunneling
https://blog.apify.com/types-of-proxies/
https://www.zyte.com/blog/python-requests-proxy/
https://smartproxy.com/proxies
https://scrapfly.io/blog/how-to-rotate-proxies-in-web-scraping/
https://www.webscrapingapi.com/best-shared-dedicated-proxy-providers
https://www.webscrapingapi.com/best-shared-dedicated-proxy-providers
https://www.google.com/search?q=web+proxy+provider
https://www.google.com/search?q=web+proxy+provider

Working with the Secure Web154

It’s also quite a common scenario, and recommended, that HTTP headers are provided to the
HTTP request when we use proxies. We can provide HTTP headers to any HTTP request. It almost
impersonates the HTTP request. An HTTP header’s values can be obtained using DevTools and reused
with basic formatting and updates:

headersHTTP = {
    "accept" :
        "text/html,application/xhtml+xml,application/xml;
        q=0.9, ….b3;q=0.7",
    "accept-encoding": "gzip, deflate, br",
    "accept-language":"en-US,en;q=0.9",
    "cache-control: "max-age=0",
    "upgrade-insecure-requests":"1",
    "referer":"https://www.somesite.com",
    "user-agent": "Mozilla/5.0 (Windows NT 10.0;
        Win64; x64) …….",
}  # HTTP Header (demo)

Important note
To obtain HTTP headers or other values, we can choose any URL in DevTools. Right-click the
URL and select the Copy as a cURL (bash) option under the Copy option. We will receive a
curl-formatted HTTP request, which can be cleaned, modified, updated, and changed to a
usable format for the required programming language. For more information on curl, please
visit https://curl.se/.

The Python random built-in library has the sample() method, which returns a random option
from the arguments provided to random.sample(), such as how much output is to be returned.
In the following code, we have chosen a random proxy from proxyPool and used it to execute an
HTTP request that returns a response as responseA:

#1. Using proxyPool
proxyA = random.sample(proxyPool,k=1) # select one random IP
responseA = requests.get(urlA, headers=headersHTTP,
    proxies={'https':proxyA[0]})
print(responseA)

The following code uses a proxy (proxyB) obtained from proxyAPI, and uses it to make an HTTP
request and obtain the response, responseB:

#2. Using proxyAPI
proxyB = requests.get(proxyAPI).content  # returns dynamic IP
responseB = requests.get(urlB, headers=headersHTTP,
    proxies={'http':proxyB})
print(responseB)

https://curl.se/

Summary 155

This section has covered a basic introduction to proxies, illustrating their use with some code examples.
Proxy usage is a growing market considering the reliability and security features they offer on the
internet, network services, and service providers.

Important note
On the market, there are plenty of service providers for proxies. They offer various paid offers
and can even be contacted for customized deals if required. A few of them are https://
proxyempire.io/, https://oxylabs.io/, https://brightdata.com/,
https://mobilehop.com/, and https://smartproxy.com/, but there are many more.

Summary
Web security is a compulsory component of the current internet revolution. We need to participate in
web scraping and extraction processes ethically for the betterment of the information that’s available
everywhere on the web. We have learned about the basics of processing with HTML forms, cookies,
and sessions, and using proxies with the help of the Python programming language, from a web
scraping perspective.

In the next chapter, we will use web-based APIs to collect relevant data.

Further reading
•	 Cookies and sessions:

	� https://www.kaspersky.com/resource-center/definitions/cookies

	� https://developer.mozilla.org/en-US/docs/web/HTTP/Cookies

	� https://www.ibm.com/docs/en/sva/9.0?topic=cookies-session-
concepts

•	 HTTP headers:

	� https://jkorpela.fi/http.html

	� https://developer.mozilla.org/en-US/docs/web/HTTP/Headers

•	 HTML forms:

	� https://www.w3schools.com/html/html_forms.asp

	� https://developer.mozilla.org/en-US/docs/web/HTML/Element/form

	� https://www.w3.org/TR/html401/interact/forms.html

https://proxyempire.io/
https://proxyempire.io/
https://oxylabs.io/, https://brightdata.com/
https://smartproxy.com/
https://www.ibm.com/docs/en/sva/9.0?topic=cookies-session-concepts
https://www.ibm.com/docs/en/sva/9.0?topic=cookies-session-concepts
https://jkorpela.fi/http.html
https://developer.mozilla.org/en-US/docs/web/HTTP/Headers
https://www.w3.org/TR/html401/interact/forms.html

Working with the Secure Web156

•	 User authentication:

	� https://www.sciencedirect.com/topics/computer-science/user-
authentication

	� https://www.ibm.com/docs/en/aix/7.2?topic=passwords-user-
authentication

•	 Proxy:

	� https://www.fortinet.com/resources/cyberglossary/proxy-server

	� https://smartproxy.com/proxies

	� https://www.upguard.com/blog/proxy-server

	� https://www.zyte.com/learn/use-proxies-for-web-scraping/

https://www.sciencedirect.com/topics/computer-science/user-authentication
https://www.sciencedirect.com/topics/computer-science/user-authentication
https://www.ibm.com/docs/en/aix/7.2?topic=passwords-user-authentication
https://www.ibm.com/docs/en/aix/7.2?topic=passwords-user-authentication
https://smartproxy.com/proxies
https://www.zyte.com/learn/use-proxies-for-web-scraping/

7
Data Extraction Using Web APIs

So far, we have learned about the web, web-based technologies, techniques for locating and extracting
data, and plenty of data-related services in various chapters of this book.

Web application programming interfaces (APIs) are built to interact with queried information. Web
APIs provide interfaces to query and access formatted data (normally in JSON format) or structured
data that is easy to use and process. Depending on the type of information (HTTP POST payload,
JSON content, third-party authentication, collective metadata, or middleware, for example) being
carried and the type of service being engaged with, authentication and some form of tokenization
are also required.

In general, a web API is a medium for loading, seeking, transferring, and embedding information in
pages or other APIs.

In this chapter, we will learn about the following topics:

•	 Introduction to web APIs

•	 Data formats and patterns in APIs

•	 Web scraping using APIs

Technical requirements
A web browser (Google Chrome or Mozilla Firefox) will be required, and we will be using JupyterLab
for our Python code.

Please refer to the Setting things up and Creating a virtual environment sections in Chapter 2 to continue
with setting up and using the environment we created.

Data Extraction Using Web APIs158

The Python libraries that are required for this chapter are as follows:

•	 requests

•	 csv

The code files for this chapter are available online in this book’s GitHub repository: https://
github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-
Edition/tree/main/Chapter07.

Introduction to web APIs
Information sharing and processing are in huge demand on the web and across web-based services.
A web API is a service available on the web that provides access to resources such as raw data, filtered
information, and embedded and dynamic content, normally in a ready-to-use and exchangeable
format such as JSON, CSV, or XML.

Information exchange or transfer is the core purpose of web APIs. We can consider an API as a web- or
browser-based service or user interface (UI) for retrieving, sharing, or accessing information based
on requests made to a web server or API provider. With plenty of security-related vulnerabilities,
many providers ask for authentication in the form of an API key (a unique block of identification
with a certain length that identifies the user or client with the API or server) or some code to make
API processing more efficient and effective.

Web APIs are not dependent on any single programming language (such as ASP, PHP, or JSP); users
and developers can read data from an API and copy it into their system or platforms using any tools
or languages they wish. Data collection and exchange, even in huge volumes, has been made possible
with the use of APIs, and also, APIs incorporate some security when required. Many API providers
found on the web provide their APIs as Software-as-a-Service (SaaS) and Product-as-a-Service
(PaaS) to their clients.

Important note
As developers and data collectors, we should always be analyzing web links (using DevTools)
for any possible APIs or any other related links, if available. If we use DevTools, then scraping
activities become quite easy and fast compared to dealing with HTML code using regex,
PyQuery, lxml, and so on.

While using DevTools for scraping, there might be situations that require some code-level
processing (such as HTTP requests) to be handled, such as HTTP headers, HTTP methods,
and setting up requests with proxies.

The number of web APIs on the market for web-related services and products has grown tremendously.
Product and service users are often provided with API tokens and API keys, and they can use APIs
for their tasks (banking, fetching logs, HTTP request analysis, web traffic analysis, accessing HTTP

https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/tree/main/Chapter07
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/tree/main/Chapter07
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/tree/main/Chapter07

Introduction to web APIs 159

status code logs, customer support, and accessing contact us and sitemap pages, dealer lists, and more).
Growth in the number of APIs has powered mobile app systems. Many service providers use APIs in
their mobile or associated systems and use content from APIs to create or generate various kinds of
messages and display that generated information in their mobile apps.

From a user’s point of view, if it’s only information that users are seeking, APIs are a huge relief because
users do not have to learn complex systems or programming languages. Service providers will make
API links available, which can be used to load and view results in real time and as required.

APIs extend the possible uses of browser-based features, and serving data. In the next section, we
will briefly discuss API types.

Types of API

Web APIs, when normally used through the browser, accept some input, authorization credentials
or keys, and information for existing keys or key:value pairs. The API result generated shows the
data, and even transfers or exchanges the data to configured systems. Developers can also extend the
functionality and features of web APIs, integrating essential logic as required.

Based on the web as a service, APIs can be classified into four different types:

•	 Public API: This is the most common type of API found on the web. These APIs are the
services that websites provide to their clients and users. They are service-oriented and are
used for information exchange. There are plenty of freely available public APIs that are found
on the web relating to Twitter, weather forecasting, the stock market, NBA games, and plenty
more. Also, most of the free APIs available on the web apply usage limits to each IP address
or machine, or time limits.

•	 Partner API: These are a restricted type of public API. Service providers allow their approved
clients or registered users to use this API based on authorization, paid services, and requirement
demand. Service providers provide an API key or credentials, and the client has to use the key
or credentials while using the API.

•	 Private or Internal API: These APIs are used for internal, company, or organizational purposes.
They are also known as in-house APIs and serve organizational features such as calendars,
human resources (HR), leave management, notices, and many more for employees and staff.

•	 Composite API: Also known as unified APIs, these APIs incorporate multiple different APIs
from one system. There might be task-specific APIs implemented in a system that need to be
implemented as a process in a certain order (that is, the output from one API becomes the input
for another API); a unified API comes in handy in such cases. The client, when accessing a
composite API, is not sure where the content comes from because redirection and time-related
issues might occur with this type of API.

Data Extraction Using Web APIs160

APIs provide data and perform services as requested. In a web-based communication protocol and
design architecture scenario, they can be divided into two types:

•	 REST: The most common and popular API architecture, representational state transfer (REST).
It is stateless (data is not stored between requests), it supports caching, and it is considered
secure. It uses standard HTTP methods (GET/POST) to provide services that are not exposed.
HTTP status codes are tracked and can also be provided as responses. It supports various
response formats, such as JSON, XML, and CSV. External library support is not required when
used with HTTP. RESTful (this is what REST APIs for web services are called) APIs provide
an interface for the user and resources to communicate; many public APIs are RESTful. In the
majority of cases, REST APIs perform Create, Retrieve, Update, and Delete (CRUD) activities.

•	 SOAP: Simple object access protocol (SOAP) is normally a messaging protocol for the web.
It supports various other protocols on the web, such as HTTP, Simple Mail Transfer Protocol
(SMTP), Remote procedure calls (RPC), and Transmission control protocol/Internet protocol
(TCP/IP) to exchange or share information across the web. SOAP is independent of platforms
and programming languages. SOAP is popular in distributed enterprise environments because
of its function drive approach, strict rules, structure, and controlled standard. SOAP supports
XML as a messaging service and is known as an XML-based protocol. The HTTP POST method
is used for information exchange and is also considered difficult to use by developers.

We now have looked at the different types of APIs based on their architectures and the services that
are integrated. With the growing demand for data, web APIs are already widely used because of their
applicability and usage among diverse web systems, applications, and users.

Important note
For more information on web APIs, REST, and SOAP, please visit the following URLs: https://
www.w3.org/api/, https://www.w3.org/TR/soap/, https://restfulapi.
net/, https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_
arch_style.htm, and https://www.altexsoft.com/blog/engineering/.

In the next section, we will discuss the benefits and limitations of web APIs from a data collection
point of view.

Benefits of web APIs

Though web APIs are not exactly a solution to web scraping, APIs are among the preferred and most
widely searched data sources that can be used to retrieve data. APIs not only process web queries
(URLs with parameters); they also display information that has been requested.

We can access an API as an information source, transformer or exchanger, query engine, in-house web
system, and plenty of other forms and formats where data communication is needed. We just need
the web browser, API access, and the API’s URL, and we are ready to go. With the growing demand
from developers and users, web APIs are being deployed, or are being used directly or indirectly.

https://www.w3.org/api/
https://www.w3.org/api/
https://www.w3.org/TR/soap/
https://restfulapi.net/
https://restfulapi.net/
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.altexsoft.com/blog/engineering/

Introduction to web APIs 161

Listed here are a few reasons why APIs are preferred to other programming concepts from a web
scraping perspective:

•	 Integration: APIs return data in a standard format, such as JSON, that can be saved and
processed further with further additions or as required.

•	 Automation: Executing APIs and collecting output is a part of automation as APIs contain
pre-configured code, such as calls to their internal processes or procedures, and necessary
dependencies, which work as automation.

•	 Cross-platform: Each API requires a URL with supported or necessary arguments that need
to be executed or loaded in the web browser. Machine, OS, and web browser dependencies are
not factors to consider when receiving output.

•	 Data format: Data received via APIs is in a certain format, such as JSON. Structured and semi-
structured data will consume less processing time and is much easier to handle.

•	 Scalability and flexibility: APIs use internal mechanisms to process and output content. Certain
URLs with some parameters will be dedicated to some sort of planned output. APIs’ links
with parameters and key:value pairs can be prepared and provided with similar or matching
values (other than existing values) to obtain the content. These manipulations of the values are
deployed and tested and are used for activities such as scraping.

•	 Data wrangling/preprocessing: There will certainly be some structured and semi-structured
output from APIs. Information from APIs is self-explanatory in comparison to content in
paragraph or textual formats. Data is available as key:value (Python dictionary or dict())
pairs, and is easy to identify, iterate through, and process further. This saves time, money, or
both in cleaning, pre-processing, wrangling, and many more data processing activities.

•	 Time: APIs are easy to process, call, and load in the browser. These activities take less time in
comparison to whole machine or virtual machine setups, which require more time to further
process the obtained data.

•	 Request-specific: Data returned from APIs is specific to the arguments supplied; there might
be more information returned than is required. Users and developers can access specific data
by applying specific filters or as provided by the API.

•	 Secure: API processing using a subscription and API keys is considered secure. But this security
can be bypassed with HTTP headers and proxies.

While there are plenty of benefits, there are also some cons to look for while using APIs for scraping
purposes. Some of them are listed here:

•	 Availability: APIs might not exist for all targeted websites, or if one is available, it might not
be accessible to users.

Data Extraction Using Web APIs162

•	 Validation: Data retrieved by an API might require verification and validation. Normally, API
content does not reveal the date or period of the data returned, though it’s assumed to provide
up-to-date information.

•	 Limitation: APIs can filter and query their output, but there are limitations in the resources they
return. An API might return 20 results per page but only 100 in total. APIs are not replacements
for web-related content. In addition, the parameters supported by an API might be limited,
which in turn limits the expected results.

•	 Irrelevant data: Data returned by an API might not exactly fit your purpose. There might be
a huge amount of irrelevant data, which requires extra cleaning and filtering.

•	 Incomplete data: Data returned by an API may fulfill a few of your scraping requirements but
might not completely or exactly fulfill the expectations or requirements. For example, basic
information on e-commerce data might exist, but detailed information may not be available
through APIs, so it might be necessary to crawl through individual product URLs. Data collection
using APIs that are available across categories and in multiple pages might be tedious.

With these pros and cons, API usage is growing on the internet. Various sites allow or use API-based
data communication. From a web scraping point of view, APIs might fulfill certain data needs, but
not completely. The data available can be helpful and can be used to tackle or manage the urgent need
of data in JSON type format or even used for inspection purposes.

Important note
Web APIs are not an alternative to web scraping. They do provide timely support and various
filters. Plus, if we find hidden API links, we can access data directly.

In the next section, we will look at using APIs, loading requests with different parameters, and exploring
APIs’ format, URLs, and more.

Data formats and patterns in APIs
Data available through APIs might be different from what you expected or might not fit the plan
exactly – in the Benefits of web APIs section, we covered a few of the ways the data might be different
(limitation, irrelevance, and more).

Acquiring data from APIs is a straightforward process with or without API authorization. Content
received via an API may appear in many formats, such as key names, nested lists and dictionaries,
named or numerical indexing blocks, and many more. We generally find API content in JSON format,
comprising Python lists and dictionaries.

Before moving on to the data formats, patterns, and results of APIs or API content, it is important to
demonstrate how APIs are called or used. Most of the time, API service providers keep an updated

Data formats and patterns in APIs 163

version of their APIs in their documentation. Listed here are a few examples that web users normally
use to access data from an API (example URL: exampledomain.com):

•	 http://api.exampledomain.com

•	 https://api.exampledomain.com/resource?key1=value1

•	 https://demo.exampledomain.com/api/v1/holidays/2023

•	 https://api.exampledomain.com?query=somevalue&limit=10&sort=asc

•	 http://content.exampledomain.com/search?key=value&key_
a=value_a&fields=field1,field2,field3

•	 https://api.exampledomain.com?start=0&end=10&step=2

•	 h t t p s : / / a p i . e x a m p l e d o m a i n . c o m /
find?apiKey=somevalue&key1=value1&format=json

•	 https://api.sunrise-sunset.org/json?lat=36.7201600&lng=-
4.4203400&date=today

•	 https://api.sunrise-sunset.org/json?lat=36.7201600&lng=-
4.4203400&formatted=0

Here are a few pointers from the preceding list of example URLs:

•	 Various types of URLs can be found, and they look like API links.

•	 Key=value arguments are used to filter the data to be more specific. If an unwanted combination
of key and value is provided, the API will return an error message or a null schema.

•	 Various HTTP methods (GET/POST/PUT and more) can be used to load the URLs. HTTP
GET method is the default method to access the URLs.

With this brief overview of probable API URL formats, let’s explore a few examples and their responses
in the following examples.

Example 1 – sunrise and sunset

https://sunrise-sunset.org/api provides a REST API that returns sunrise and sunset
times based on the geo-coordinates supplied. The API supports the GET HTTP method and a number
of other parameters, along with the coordinates.

For example, https://api.sunrise-sunset.org/json?lat=36.7201600&
lng=-4.4203400 is provided with values for lat (latitude) and lng (longitude). This request
results in JSON content, as shown in Figure 7.1:

https://sunrise-sunset.org/api
https://api.sunrise-sunset.org/json?lat=36.7201600&lng=-4.4203400
https://api.sunrise-sunset.org/json?lat=36.7201600&lng=-4.4203400

Data Extraction Using Web APIs164

Figure 7.1: API result (sunrise-sunset)

The response, as shown in Figure 7.1, is available with two keys: results and status.

Example 2 – GitHub emojis

https://api.github.com/emojis provides a list of emojis that can be used in GitHub
comments and content. There are a total of 1,876 items; we can see a few of them in Figure 7.2:

Figure 7.2: GitHub emojis

As shown in Figure 7.2, the API result is in JSON format. Each entity is a distinct key:value pair. There
are no nested or array results from the API.

https://api.github.com/emojis

Data formats and patterns in APIs 165

Example 3 – Open Library

https://openlibrary.org/search.json?q=python&author=Wes provides data
that’s filtered using two parameters: q=python and author=Wes. We are querying the python
text for authors whose first name is or contains the text Wes. Open Library is an experimental search
API (https://openlibrary.org/dev/docs/api/search). We can see that there is no
mention of the term API in the URL in this example. The URL looks like a regular HTTP GET request
with a few GET parameters.

Figure 7.3 shows the result, which totals 11. Each result is an element of possible arrays found inside
the docs block. There are also multiple key:value pairs and a few list and array entities inside docs
with some items inside them.

Figure 7.3: Open Library API

Important note
Developers or users are supposed to open or keep investigating the browser’s DevTools and
open the Network panel for content and information such as HTTP methods, HTTP headers,
cookies, content type, and to see if any API links can be found. Multiple APIs might also get
used behind some web-based logic for generating content.

https://openlibrary.org/search.json?q=python&author=Wes

Data Extraction Using Web APIs166

In this section, we have explored various types of data that are found through APIs. Nested, unnested,
key:value pairs, and combined output are generally expected from web APIs. Apart from this, API-related
links are also difficult to find, until and unless the website provides them, otherwise pages such as
robots.txt and sitemap.xml, as well as the DevTools, are there to be thoroughly investigated.

In the next section, we will use some freely available web APIs. We will use Python to scrape their contents.

Web scraping using APIs
Technically, obtaining data from APIs is easy, and is also different from the web scraping scenarios.
Most of the data is in JSON format, and there is no use of XPath, CSS Selector, or any other parsing
libraries. Some data found using APIs might contain a lot of HTML code. To deal with this content,
XPath and CSS Selector might be required.

Important note
In the examples in this section, we have tried to omit APIs that require an API key (walmartlabs.
com, nasa.gov, nytimes.com, maps.googleapis.com) or user authentication tools.
An API key is an authenticated value provided by service providers (after user registration)
that identifies the user using the API. Freely available APIs are being used in these examples.

With the help of a few examples, we will collect data returned via some APIs. This collected data will
then be exported as JSON and CSV files.

Example 1 – holidays from the US calendar

https://date.nager.at/ contains information on worldwide public holidays. https://
date.nager.at/PublicHoliday/Country/US displays a list of public holidays in the US.
Tabular data is available for scraping, but we are going to use the https://date.nager.at/
api/v3/PublicHolidays/2023/US API for the holidays in the year 2023.

The following code declares apiUrl with the content URL:

apiUrl= "https://date.nager.at/api/v3/PublicHolidays/2023/US"
headers= {          # HTTP Request Header
'accept':'text/html,application/xhtml+xml,application/xml;q=0.9,image/
avif,  image/webp,image/apng,*/*;q=0.8,application/signed-
exchange;v=b3;q=0.7',
'accept-language': 'en-US,en;q=0.9',
'cache-control':'max-age=0',
'upgrade-insecure-requests':'1',
'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36'
}
response = requests.get(apiUrl, headers=headers).json()

http://walmartlabs.com
http://walmartlabs.com
http://nasa.gov
http://nytimes.com
http://maps.googleapis.com
https://date.nager.at/
https://date.nager.at/PublicHoliday/Country/US
https://date.nager.at/PublicHoliday/Country/US
https://date.nager.at/api/v3/PublicHolidays/2023/US
https://date.nager.at/api/v3/PublicHolidays/2023/US

Web scraping using APIs 167

The response is collected using the json() function from the requests library. HTTP request
headers, headers, are also provided to requests.get(). Request header entities or headers
have been collected from DevTools via Copy | Copy as cUrl (bash).

As shown in Figure 7.4, apiUrl returns the HTTP response in JSON format. To deal with JSON
content, the requests library has a method called json() (this does the loading and dumping of
JSON content, so there’s no need to import the json Python library) for processing JSON content.

Figure 7.4: JSON response from the API

The JSON response looks plain and straightforward and is easy to process. It’s been decided to collect
only 'date' and 'name' from all JSON listings.

The following code block shows that the 'date' and 'name' entries for each holiday are being
collected in the lists collector:

lists=[]               # empty list
for holiday in response:
    lists.append([holiday['date'],holiday['name']])

lists                  # final list
writeto_csv(lists,'holidays.csv',['Date','Name'])      # Export to CSV

Finally, lists is exported to a file named holidays.csv using the predefined writeto_csv()
function, with Date and Name column headers.

Data Extraction Using Web APIs168

Example 2 – Open Library book details

Open Library (https://openlibrary.org/developers/api) provides an experimental
search API. It has various API-related options for its collection of books and similar content. For this
example, https://openlibrary.org/dev/docs/api/search will be used to find book data
with the subject python and the author Wes (the result is available via https://openlibrary.
org/search.json?q=python&author=Wes).

As defined in the following code, apiUrl searches openlibrary.org for the defined subject
and author variables. The response from apiUrl is in JSON format but is nested in structure.
The HTTP request to apiUrl is processed along with a few selected HTTP headers. The json()
method and requests.get() reveals that the content is in JSON format:

subject="python"
author="Wes"
apiUrl="https://openlibrary.org/search.
json?q="+subject+"&author="+author

headers={
'Upgrade-Insecure-Requests': '1',
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36'
}
response = requests.get(apiUrl, headers=headers).json()

Information about books is provided under various indexes, titles, or keys, found inside
response['docs']. Values for fields such as 'book_title', 'published_date',
'publisher', 'author', and 'subjects' are collected (if available) in a list named lists:

lists=[]  # Collector
for book in response['docs']:
    if 'subject_key' in book: # check if subject_key exists
        lists.append([book['title'],
        book['publish_date'][0],
        book['publisher'][0],
        book['author_name'][0],
        "|".join(book['subject_key'])])
    else:
        lists.append([book['title'],
        book['publish_date'][0], book['publisher'][0],
        book['author_name'][0], ''])

https://openlibrary.org/dev/docs/api/search
https://openlibrary.org/search.json?q=python&author=Wes
https://openlibrary.org/search.json?q=python&author=Wes
http://openlibrary.org

Web scraping using APIs 169

With all the values collected, the data is then written to the CSV file python_wes.csv:

writeto_csv(
lists,
'python_wes.csv',
['book_title', 'published_date', 'publisher', 'author', 'subjects']
)

The collected data is shown in Figure 7.5:

Figure 7.5: Book details from the search API

Though there were multiple values for publish_date, publisher, and author_name, only
the first data to be found is collected. The API used in this example has many nested and similar data
blocks. It’s the developer’s duty to decide which elements are to be captured.

Example 3 – US cities and time zones

In this example, we are using the free https://api.travelpayouts.com/data/en/
cities.json API. This URL contains lists of global cities and their coordinates, country plus city
codes, and time zones. Data from the API is in JSON format, which is converted to a list of Python
dict objects. There are more than 9,000 records.

From the global records, we are only interested in collecting details for the US. Also, upon brief
analysis, you will notice some different time zones for cities in the US, so we will be collecting data in
two datasets. The zone_america dataset contains records that contain a time zone with the word

https://api.travelpayouts.com/data/en/cities.json
https://api.travelpayouts.com/data/en/cities.json

Data Extraction Using Web APIs170

America, and the zone_not_america dataset contains records for those cities with a time zone
that does not contain the word America, as shown in the following code block:

apiUrl="https://api.travelpayouts.com/data/en/cities.json
response = requests.get(apiUrl).json() # Load API
zone_america=[] # time zone like "America"
zone_not_america=[] # time zone without word "America"
for info in response:
      if info['country_code']=="US" and "America" in
      info['time_zone']:
          zone_america.append([info['country_code'],
          info['code'],info['name'],info['time_zone']])

      if info['country_code']=="US" and "America" not in
      info['time_zone']:
          zone_not_america.append([info['country_code'],
          info['code'],info['name'],info['time_zone']])

Data, as per the conditions implemented in the preceding code, is collected from the iteration. The
data is written to the zone_america.csv and zone_not_america.csv files:

Write collected data to CSV
writeto_csv(zone_america,'america_timezone.csv',['country_code','city_
code','city_name','time_zone'])
writeto_csv(zone_not_america,'not_america_timezone.csv',['country_
code','city_code','city_name','time_zone'])

The collected data is shown in Figure 7.6:

Figure 7.6: US – time zones with city names and codes

Summary 171

In this example, we filtered the API results to return only cities in the US, and filtered the time zone
text with and without the word America. With the desired data collected in a CSV file, it’s much
easier to perform data analysis tasks and deal with data visualization.

Summary
Web APIs provide many benefits for finding and scraping data. Because of the predefined format of
data returned by APIs, you don’t need to perform additional query-related tasks using XPath or CSS
selectors, which saves time. Web APIs are structured, easily accessible, filterable, and ready to exchange
data between machines, platforms, and protocols.

In the next chapter, we will be learning about automation using Selenium, and we will use it to scrape data.

Further reading
•	 APIs:

	� https://restfulapi.net/

	� https://developer.mozilla.org/en-US/docs/Web/API

	� https://auth0.com/blog/developing-restful-apis-with-python-
and-flask/

•	 JSON:

	� https://www.json.org/json-en.html,

	� https://developer.mozilla.org/en-US/docs/Learn/JavaScript/
Objects/JSON

•	 HTTP methods: https://developer.mozilla.org/en-US/docs/Web/HTTP/
Methods

•	 SOAP: https://www.soapui.org/learn/api/soap-vs-rest-api/

•	 REST:

	� https://www.ibm.com/topics/rest-apis,

	� https://pythonbasics.org/flask-rest-api/

https://restfulapi.net/
https://auth0.com/blog/developing-restful-apis-with-python-and-flask/
https://auth0.com/blog/developing-restful-apis-with-python-and-flask/
https://www.json.org/json-en.html
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/JSON
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/JSON
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods
https://www.soapui.org/learn/api/soap-vs-rest-api/
https://pythonbasics.org/flask-rest-api/

8
Using Selenium

to Scrape the Web

So far, we have learned about some Python libraries, web and API-based technologies, data-finding
and locating elements, extraction techniques, and plenty of data-related services in Chapters 1 to 7.

Selenium automates browsers – a quote from https://www.selenium.dev/, and it is primarily
a collection of tools also known as a testing framework. Selenium is used to automate the web
(applications, website forms, and much more) for testing purposes. Along with testing using automation,
there are many potential service cum task-based scenarios that can be performed and handled using
Selenium. The Selenium framework consists of various modules or components. We will be using
Selenium WebDriver.

In general, we will install and learn about Selenium WebDriver, use WebDriver to automate websites,
and use Selenium to scrape data from the web.

In this chapter, we will cover the following topics:

•	 Introduction to Selenium

•	 Using Selenium WebDriver

•	 Scraping using Selenium

Technical requirements
You will require a web browser (Google Chrome or Mozilla Firefox) and we will be using JupyterLab
for Python code.

Please refer to the Setting things up and Creating a virtual environment sections of Chapter 2 to continue
with setting up and using the environment created. We will be using Google Chrome with Selenium
WebDriver v4.10.0.

https://www.selenium.dev/

Using Selenium to Scrape the Web174

To install the selenium Python library, the following links will be very helpful:

•	 https://selenium-python.readthedocs.io/installation.html

•	 https://www.selenium.dev/documentation/webdriver/getting_started/
install_library/

•	 https://pypi.org/project/selenium/

We will require the following Python libraries for this chapter:

•	 requests

•	 selenium

•	 re

•	 csv

•	 json

The code files for this chapter are available online in this book’s GitHub repository: https://
github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-
Edition/tree/main/Chapter08.

Introduction to Selenium
The testing of web-based applications or systems is compulsory according to the system development
life cycle (SDLC), and this step is done prior to the launch of applications on the web. Selenium, an
open source project, uses a web browser as an interface for automation and can be used for web-related
or web-based activities.

Dynamic and secure web applications using JavaScript (JS), cookies/sessions, other JS scripts, and
many more web components can be handled, processed, automated, and crawled with the use of
Selenium. “Selenium is an umbrella project for a range of tools and libraries that enable and support the
automation of web browsers.” (https://www.selenium.dev/documentation/overview/).
Though primarily used for browser-based automation, different cases that can be managed or used
with a browser can be tackled using Selenium. This makes Selenium the most popular and appreciated
automation-related browser-based tool.

Selenium is mostly used for web testing. In the following sections, we will explore the benefits and
usages of Selenium, and how we can use it for web scraping.

https://selenium-python.readthedocs.io/installation.html
https://www.selenium.dev/documentation/webdriver/getting_started/install_library/
https://www.selenium.dev/documentation/webdriver/getting_started/install_library/
https://pypi.org/project/selenium/
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/tree/main/Chapter08
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/tree/main/Chapter08
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/tree/main/Chapter08
https://www.selenium.dev/documentation/overview/

Introduction to Selenium 175

Advantages and disadvantages of Selenium

Selenium supports different web browsers through one of its components, called WebDriver. There
are many benefits that make Selenium popular, and a few are as follows:

•	 Easy to implement

•	 Cross-browser support

•	 Open source and free

•	 Supports parallel testing

•	 Supports multiple operating systems (OSs)

•	 Supports multiple languages (Java, Python, Ruby, PHP, and others)

•	 A huge collection of docs and resources is available

•	 Supports remote servers and cloud devices

Using and implementing Selenium in application testing has many advantages, but there also exist
some limitations or disadvantages:

•	 Working with multiple tabs and frames

•	 Low execution speed (depending on the machine)

Despite the large number of advantages and extendibility that Selenium offers, it is slow in terms
of processing compared to some of its competitors (Playwright, Puppeteer), and its large memory
consumption is still a debatable issue, which is discussed in web-based groups and communities.

Important note
For more details on a few selected automation libraries and frameworks, please refer to Selenium
https://www.selenium.dev/about/, Puppeteer https://pptr.dev/, and
Playwright https://playwright.dev/.

Use cases of Selenium

There are plenty of cases for the use of Selenium in projects. From a web-scraping perspective, Selenium
can be used in both normal and complex cases. For normal scraping cases, we can definitely use other
libraries and techniques that we learned about earlier, in Chapters 2 to 7.

https://www.selenium.dev/about/
https://pptr.dev/
https://playwright.dev/

Using Selenium to Scrape the Web176

Selenium is used for automation and testing on the web. The use of Selenium is preferred (many
times, even as a last option) in specific cases or when scraping is not possible with other libraries and
techniques. Some of the cases in which the use or involvement of Selenium for scraping tasks may
be required are as follows:

•	 Handling alerts, iframes, and popups (time-bound)

•	 Collecting and using cookies and sessions

•	 Addressing scrolling and clicking activity (ensuring anti-bot measures on websites)

•	 Working on JavaScript-based websites (websites with dynamic values or elements)

•	 Taking screenshots

•	 Using headless mode (less consumption of resources)

•	 Bypassing basic authentication (hidden or dynamic values)

•	 Dealing with HTML forms

•	 Executing and injecting JavaScript code

•	 Impersonating human action on a page

Selenium is a framework or collection of various task-based modules (libraries). We will be introducing
these modules in the next section.

Components of Selenium

Application (web-based) testing is done at various stages of the development cycle and even multiple
times. This type of testing ensures that the development is requirement-specific or is progressing as
planned. It also helps to find any possible bugs or errors and to overcome or document them.

Generally, testing is done manually (by users) and/or using automated tools such as Selenium.
Automating testing and verification tasks is one of the core components of the application life cycle.
Selenium consists of the following three major components or projects (https://www.selenium.
dev/projects/):

•	 Selenium WebDriver: This is an Object-Oriented (OO) API and one of the main components
that is used to automate the browser. Browser automation is done by providing commands
with the help of in-built APIs and other languages (JAVA, PHP, and Python) to third-party
browser drivers such as Google Chrome, Mozilla, and Opera. WebDriver allows a program
or script to access the browser in a native way, just like a user would. For scraping-related
tasks, we normally deal with WebDriver, and we will explore its features in the Using Selenium
WebDriver section. For more details on WebDriver, please visit this link: https://www.
selenium.dev/documentation/webdriver/.

https://www.selenium.dev/projects/
https://www.selenium.dev/projects/
https://www.selenium.dev/documentation/webdriver/
https://www.selenium.dev/documentation/webdriver/

Using Selenium WebDriver 177

•	 The Selenium IDE: This is a ready-to-use browser extension, also known as a User Interface
(UI) of Selenium that records user actions in the browser. The IDE also provides a feature that
plays back a recorded action, along with the commands deployed and the defined parameters
with values. It also has debugging features such as setting breakpoints, addressing exceptions
through the IDE, creating scripts that can run commands, and supporting the control-flow
structure. This extension is available for Google Chrome and Mozilla Firefox. For more
details on the Selenium IDE, please visit this link: https://www.selenium.dev/
documentation/ide/.

•	 Selenium Grid: This allows running tests or doing automation across multiple machines and
browsers and cross-platform testing. Grid also allows component-based configuration that
is deployed across machines or platforms. Basically, Selenium Grid supports distributable
testing. This helps reduce the testing time and identify performance issues in parallel for
different systems. For more details on Selenium Grid, please visit this link: https://www.
selenium.dev/documentation/grid/.

With this brief overview of and introduction to Selenium, we will now install and explore Selenium
WebDriver using code and examples in the next section.

Using Selenium WebDriver
Selenium is used for browser automation, and one of its major components, WebDriver, is the core
tool to access browsers. WebDriver implements code logic for selected browsers that is required during
automation. It’s also the core system that binds the Selenium framework with the browser and often
gets called or referred to as Selenium driver or only driver. For more detailed information, visit this
link: https://www.selenium.dev/documentation/webdriver/getting_started/.

Before going deep into the automation or using the framework, let’s install the required libraries in
the next section.

Setting things up

To explore browser automation using Python and Selenium WebDriver, first, we need to install the
selenium library (a Python library), and browser-related drivers.

Important note
Selenium is a framework that contains various components such as WebDriver and others, whereas
selenium is a Python library (https://www.selenium.dev/documentation/
webdriver/getting_started/install_library/) that we use to code and
maintain logic that binds WebDriver and the selected browser.

https://www.selenium.dev/documentation/ide/
https://www.selenium.dev/documentation/ide/
https://www.selenium.dev/documentation/grid/
https://www.selenium.dev/documentation/grid/
https://www.selenium.dev/documentation/webdriver/getting_started/
https://www.selenium.dev/documentation/webdriver/getting_started/install_library/
https://www.selenium.dev/documentation/webdriver/getting_started/install_library/

Using Selenium to Scrape the Web178

Let’s first verify the setup of the selenium library:

import selenium
selenium.__version__    # 4.10.0
selenium.__spec__
ModuleSpec(name='selenium',…… submodule_search_locations=['C:\\
HOWScraping2E\\secondEd\\Lib\\site-packages\\selenium'])

This code block shows that the Python selenium library with version 4.10.0 has been successfully
installed in our target environment (please refer to the Setting things up and Creating a virtual
environment sections of Chapter 2).

After verifying the Python library, we will install the drivers (browser drivers) in the next section.

Installing drivers

Before installing the browser drivers, identifying system specifications is essential. For the purpose of
this book, we will use Windows OS and choose Google Chrome as our browser driver.

Important note
Selenium supports multiple web browsers, such as Firefox, Internet Explorer, Safari, Chrome,
and others. If you are using Firefox, please visit the https://firefox-source-docs.
mozilla.org/testing/geckodriver/Support.html link for more details on setup.

Let’s follow these few steps to set up drivers for Google Chrome:

1.	 Visit https://www.selenium.dev/downloads/ and go to the Platforms supported
by Selenium section.

2.	 Now go to the Browsers | Chrome option. The documentation link to https://
chromedriver.chromium.org/ should be available.

3.	 Click the link with the Getting started with ChromeDriver on Desktop text, which is available
under the ChromeDriver Documentation option.

Clicking the link will land you on the https://chromedriver.chromium.org/
getting-started page.

4.	 In the Setup section, there is a Downloads link. Clicking the Downloads text will route you
to the https://chromedriver.chromium.org/downloads URL.

5.	 Go to the https://chromedriver.chromium.org/downloads URL, and click the
link with the ChromeDriver 111.0.5563.64 text, as shown in Figure 8.1:

https://firefox-source-docs.mozilla.org/testing/geckodriver/Support.html
https://firefox-source-docs.mozilla.org/testing/geckodriver/Support.html
https://www.selenium.dev/downloads/
https://chromedriver.chromium.org/
https://chromedriver.chromium.org/
https://chromedriver.chromium.org/getting-started
https://chromedriver.chromium.org/getting-started
https://chromedriver.chromium.org/downloads

Using Selenium WebDriver 179

Figure 8.1: Choosing the stable release for ChromeDriver

6.	 Clicking the highlighted link in Figure 8.1 will route you to https://chromedriver.
storage.googleapis.com/index.html?path=111.0.5563.64/.

7.	 Clicking the link in step 6 will load a few options, as shown in Figure 8.2:

Figure 8.2: OS-based ChromeDriver options

https://chromedriver.storage.googleapis.com/index.html?path=111.0.5563.64/
https://chromedriver.storage.googleapis.com/index.html?path=111.0.5563.64/

Using Selenium to Scrape the Web180

8.	 Depending on the OS (Windows OS in our case), choose chromedriver as shown in
Figure 8.2, and download it.

9.	 After successfully downloading the zipped file (chromedriver_win32.zip), it can be
unzipped or the contents (chromediver.exe) can be extracted to the project root folder
or any appropriate location. The path for chromedriver.exe can be set in a variable and
used to develop code.

Important note
There are multiple ways to install and access chromedriver using selenium. Please
follow the links provided for more detailed information: https://selenium-python.
readthedocs.io/installation.html and https://www.selenium.dev/
documentation/webdriver/getting_started/install_drivers/. Similar
steps can be followed if any different browser is to be tried or tested.

With the setup-related steps completed, in the next section, we will verify the setup with the help of
a code example.

Verifying the setup

During the setup stage, we have to visit and process a few links, download the files, and so on. To verify
the setup and confirm that the driver is running fine, let us deploy the code that loads the https://
www.python.org URL in the browser (Chrome) with the help of selenium and chromedriver:

from selenium import webdriver
from selenium.webdriver.chrome.service import Service
chromedriver_path="C:\HOWScraping2E\driver\chromedriver.exe"    # path
service = Service(service=chromedriver_path)
driver = webdriver.Chrome(service=service)  
initiate an empty Chrome window
driver.get('https://www.python.org')  # loads URL in browser
driver.quit() # closes browser & terminates the session

In this code block, we first imported webdriver and then Service. selenium.webdriver
consists of various tools and classes. Service is one of the classes from webdriver.chrome.
service. Service is mainly associated with browser-based features and functions. The path
(location) to chromedriver.exe is important and has to be provided to the service.

https://selenium-python.readthedocs.io/installation.html
https://selenium-python.readthedocs.io/installation.html
https://www.selenium.dev/documentation/webdriver/getting_started/install_drivers/
https://www.selenium.dev/documentation/webdriver/getting_started/install_drivers/
https://www.python.org
https://www.python.org

Using Selenium WebDriver 181

Important note
Earlier versions of Selenium could accept the path to chromedriver.exe as an executable_
path property. The executable_path property is now deprecated. Now, Chrome() asks
for a path as a Service object.

driver = webdriver.Chrome(service=service) creates a new session and displays an
empty browser window as shown in Figure 8.3:

Figure 8.3: Empty browser window of Chrome

There is always an alert message at the top, containing the text Chrome is being controlled by automated
test software, as shown in Figure 8.3. The text conveys that Selenium WebDriver is working and that
Chrome is being used by the automation-related software.

Normally, the steps so far can be considered as loading the web browser on a machine. The driver.
get('https://www.python.org') code loads the URL (as if the user typed the URL in
the browser). The get() method accepts the URL and passes it to the driver almost as an HTTP
request. Finally, the driver.quit() code closes the browser window loaded with https://
www.python.org and terminates the driver session.

In the next section, we will explore selenium.webdriver and the selenium library in more
detail and with examples.

Exploring Selenium

Once the Selenium WebDriver has been successfully installed and is working fine, there are plenty of
activities that can be done with the help of automation. We will explore some basic things and look
in depth at using automation as a solution to problems, along with code examples.

Important note
For more details and explanatory documentation, please visit https://www.selenium.dev/
documentation/webdriver/ and https://selenium-python.readthedocs.
io/getting-started.html.

https://www.python.org
https://www.python.org
https://www.selenium.dev/documentation/webdriver/
https://www.selenium.dev/documentation/webdriver/
https://selenium-python.readthedocs.io/getting-started.html
https://selenium-python.readthedocs.io/getting-started.html

Using Selenium to Scrape the Web182

Basic exploring

In the following code example, we will get an understanding of a few basic activities using Selenium
that are normally priority tasks:

from selenium import webdriver
from selenium.webdriver.chrome.service import Service
chromedriver_path="C:\HOWScraping2E\driver\chromedriver.exe"
service = Service(service=chromedriver_path)
driver = webdriver.Chrome(service=service)
chromedriver

Here, an empty, new Chrome window gets loaded similar to the browser window shown in Figure 8.3.

We will now supply three different URLs and iterate them by obtaining some information:

urls = {
    'google':'https://www.google.com',
    'python':'https://www.python.org',
    'selenium':'https://www.selenium.dev'
}

Now, let’s iterate items() in the urls dictionary:

for key,url in urls.items():    # iterate the urls items
    driver.get(url)
    driver.implicitly_wait(1)    # Wait 1 sec
    print(driver.title)          # HTML <title>
    print(driver.current_url)    # Current URL

driver.get(url) loads the URL in the browser. The implicitly_wait(1) method has
been used as the sleep time, waiting for the allotted 1 second before any further action is taken. The
driver.title code returns the <title> HTML value. driver.current_url reveals the
redirect URL or the latest URL that is being loaded in the browser.

Selenium also supports features related to screenshots. get_screenshot_as_file() is one of
the common methods used for this purpose:

print(driver.get_cookies())
driver.get_screenshot_as_file(key+".png")  # png files
print(driver.page_source)    # HTML page source
driver.implicitly_wait(3)    # wait 3 sec before page Refresh
driver.refresh()            # refresh the page

Using Selenium WebDriver 183

driver.get_cookies() lists all the cookie-related values that exist in JSON format.

Receiving, updating, and setting cookie-related values is quite common to bypass some security
features. Using selenium to obtain cookie values and process them is one of the major tasks from
the web-scraping perspective.

driver.page_source returns the page source of the page or the HTML source of the page.
Receiving page_source is also one of the significant features of Selenium. In page_source,
from selenium, we can find values that are dynamically formed or generated using JavaScript.
page_source content is required and can be parsed using lxml, pyQuery, bs4, and other Python
libraries. The refresh() method acts like a browser-based page refresh button.

Browser-based history traversing buttons are handled by the driver methods back() and forward():

driver.back() # history Python.org
driver.forward() # go forward

back() takes you to the previous page, whereas forward() takes you to the next page.

In this example, we used the driver-related features and functions. In the next section, we will find
and locate HTML elements and deal with dynamic values.

HTML forms and elements, and JavaScript

Form (HTML <form>) management or processing is one of the priority tasks for automation, testing,
and overall Quality Analysis (QA). Using Selenium for such tasks is handy in terms of time (iterating
through values, parallel processing).

Although we will be using an automation tool, we need to identify elements using CSS Selector, XPath,
or some new methods available in Selenium. The identification of HTML elements (id, name), their
positions, and values is required to process them. For the following example, we will be using HTML
<form> from https://phptravels.com/demo.

During analysis, it seems that the Instant Demo Request Form form (as shown in Figure 8.4) has a
total of five <input> elements and a <button> element to submit information.

https://phptravels.com/demo

Using Selenium to Scrape the Web184

Figure 8.4: Instant Demo Request Form

The form also implements basic security. It asks for the sum of two numeric values to be submitted.
These two numeric values, when browsed through the page source or DevTools, cannot be identified
except for their elements (span#numb1, span#numb2), as shown in Figure 8.5.

Figure 8.5: Dynamic content numb1, numb2 (to submit)

The HTML elements and are both empty. Their
values are generated by JavaScript dynamically, as shown in the code in Figure 8.6:

Using Selenium WebDriver 185

Figure 8.6: JavaScript supplying random values to HTML elements

The JavaScript document.getElementById("numb1").innerHTML = numb1 code sets
or assigns the numb1 value (some random numeric value) to the HTML element with id="numb1"
(). For example, if numb1 has the value 10,
 will be 10. Similarly, numb2 will also be assigned a
numeric value:

num1 = driver.find_element(By.ID,"numb1").text
num2 = driver.find_element(By.ID,"numb2").text
result = int(num1)+int(num2)

This code extracts the text string value from the elements with IDs numb1 and numb2.
These text values are then converted to integers using the Python int() method:

driver.find_element(By.ID,"number").send_keys(result)

The sum of the two integers, result, is entered or provided to <input> with id="number"
using send_keys().

Important note
send_keys() is one of the interactive types of command that can be applied to text fields
and elements with content. For more detailed information, please visit https://www.
selenium.dev/documentation/webdriver/elements/interactions/.

selenium.webdriver provides various types of element locators to identify HTML elements
and attributes associated with them. These locators are provided as arguments to the driver methods:

•	 find_element(): Returns a single element

•	 find_elements(): Returns multiple or lists of elements

https://www.selenium.dev/documentation/webdriver/elements/interactions/
https://www.selenium.dev/documentation/webdriver/elements/interactions/

Using Selenium to Scrape the Web186

Importing or using the By class (from selenium.webdriver.common.by import By),
various locators and attributes can be found. A few of them are as follows:

•	 By.ID: Find elements with the id attribute, used as driver find_element
(By.ID,"numb1") for

•	 By.XPATH: Find elements by providing XPath expressions, for example, driver.find_
element(By.XPATH,"[id='demo']")

•	 By.NAME: Find elements with the name attribute, for example, driver.find_element
(By.NAME,"first_name")

•	 By.TAG_NAME: Find elements with a tag name, for example, driver.find_element
(By.TAG_NAME,"h2")

•	 By.CLASS_NAME: Find elements with the class attribute, for example, driver.find_
element(By.CLASS_NAME,"email")

•	 By.CSS_SELECTOR: Find elements using CSS selector expressions, for example, driver.
find_element(By.CSS_SELECTOR,".completed > h2")

•	 By.LINK_TEXT: Find elements from the links available and those that match the complete
string provided, for example, driver.find_element(By.LINK_TEXT,"Childrens")
will match the anchor tag or <a> that has the "Childrens" text

•	 By.PARTIAL_LINK_TEXT: Find elements from the links available and those that match
a part or portion of the string provided, for example, driver.find_element(By.
PARTIAL_LINK_TEXT,"click") will match the anchor tag or <a> that contains the
text (or portion of the text) click

For more information about XPath and CSS Selector, please refer to the Introducing XPath and CSS
Selector to process markup documents section of Chapter 3. Along with locators, there are also many
supporting methods and attributes. Some of the common ones and their examples are as follows:

•	 text: Extracts or copies the content. For example, the num1 = driver.find_element(By.
ID,"numb1").text code will extract the content from elements with id="numb1".

•	 tag_name: Returns the HTML tag name from the provided locator. For example, driver.
find_element(By.ID,"numb1").tag_name will return the tag name that is being
referenced by the id="numb1" locator.

•	 click(): Performs interactions on a web page such as mouse clicks. For example, driver.
find_element(By.ID,"demo").click() will click the element with id="demo".

•	 clear(): Cleans or clears out the text from editable elements. For example, driver.
find_element(By.NAME,'first_name').clear() will clean the text or values if
available with <input name='first_name'>.

Scraping using Selenium 187

•	 get_attribute(): Returns the attribute value if available. For example, driver.find(By.
NAME,'first_name').get_attribute('class') will return the class attribute
value from elements with the name="first_name" attribute.

•	 get_screenshot_as_file(): Captures a screenshot of the designated area of a web page
or the default screen. For example, driver.get_screenshot_as_file('filename.
png') will capture a screenshot in the code location with the filename 'filename.png'.

•	 is_enabled(): Returns a Boolean value (True or False) for the provided locator
based on the element property enabled or disabled (disabled form elements are not usable or
cannot interact). For example, driver.find_element(By.NAME,'first_name').
is_enabled() will return True. HTML elements can carry a disabled attribute, for
example, <input type="text" value="something" disabled />.

Important note
For more detailed listings and information on WebDriver with examples, please visit https://
www.selenium.dev/documentation/webdriver/.

This section provided us with a selective overview of Selenium WebDriver (selenium.webdriver),
how to use it, and how to explore various methods and properties with a few examples. From the
scraping perspective, we need to bind or manage the data and information available from Selenium
and other parsing libraries to the logical or implemented context.

In the next section, we will be using Selenium to scrape sites and collect data.

Scraping using Selenium
Selenium is used for automation – primarily web testing – using various browsers and coding in
different languages. Along with automation, the benefits or features provided are quite handy and
can be utilized in tasks such as web scraping.

In this section, we will use and explore quite a few features from the selenium library for web scraping.

Example 1 – book information

In this example, we will collect some details from the books listed in the Childrens category at the
URL http://books.toscrape.com, which are available in the fictional bookstore at the
https://toscrape.com URL.

https://www.selenium.dev/documentation/webdriver/
https://www.selenium.dev/documentation/webdriver/
http://books.toscrape.com

Using Selenium to Scrape the Web188

In particular, we are searching for the anchor element <a>, which contains the bookstore text
(partial text or a portion of the text) after loading mainUrl. With element <a> being traced, the
href attribute from <a> can be collected using the get_attribute() method for link. The
click() method clicks the element that contains the bookstore text:

mainUrl= "https://toscrape.com/"
driver.get(mainUrl)  # load mainUrl
link = driver.find_element(By.PARTIAL_LINK_TEXT,
    "bookstore").get_attribute('href')

link  # http://books.toscrape.com
driver.find_element(By.PARTIAL_LINK_TEXT,
    "bookstore").click()

We now have the http://books.toscrape.com page loaded in the existing browser window.
The http://books.toscrape.com page contains default listings and many categories. Here,
we will be strict, looking for the exact Childrens text in the categories available or listed. We will
collect the URL of the element with the Childrens text and apply click() to it. On the element
found, click() impersonates a user action such as choosing or moving through the content and
clicking the mouse button:

categoryURL = driver.find_element(By.LINK_TEXT,
    "Childrens").get_attribute('href')
print(f"Category URL: {categoryURL}")
Category URL: http://books.toscrape.com/catalogue/category/books/
childrens_11/index.html
driver.find_element(By.LINK_TEXT, "Childrens").click()
load category page

With the page link stored as categoryURL being loaded, we will now collect the books available on
the page. During this example preparation, there was pagination in the Childrens category. The
find_elements() method finds multiple elements that match the locator provided.

Each book listing is found as inside parent tag with the row class. Iterating over available
 list elements, various values are collected, such as articleLink, imageSrc, price, and
more. Different types of locators, such as CSS_SELECTOR, TAG_NAME, and CLASS_NAME, are
deployed depending on their suitability:

listings = driver.find_elements(By.CSS_SELECTOR,
    "ol.row li")# multiple element
for listing in listings:
    # Iterate the listing available in the page
    article = listing.find_element(By.TAG_NAME,'article')
    image = article.find_element(By.CSS_SELECTOR,"a")
    articleLink = image.get_attribute('href')

http://books.toscrape.com
http://books.toscrape.com

Scraping using Selenium 189

    imageSrc = image.find_element(By.TAG_NAME,
        'img').get_attribute('src')
    …..
    price = article.find_element(By.CLASS_NAME,
        "price_color").text

The articleLink variable contains the href value that links to the detail page of the particular
book. Some information is available only on the detail page, such as UPC and Availability (stock status,
quantity). An XPath locator is also used. For example, //th[contains(text(),'UPC')]/
following-sibling::td points to the <td> element, which is available after <th>..</th>,
containing the text UPC. Please refer to the Introducing XPath and CSS selectors to process markup
documents section of Chapter 3:

if articleLink:
    listing.find_element(By.TAG_NAME,'img').click()
    upc = driver.find_element(By.XPATH,
        "//th[contains(text(),'UPC')]/
            following-sibling::td").text

    stockQty= driver.find_element(By.XPATH,
        "//th[contains(text(),'Availability')]/
            following-sibling::td").text

So far, the code will have collected information from each book available in the listings and loaded
the detail page. Data collected from the listings and the detail page is cleaned, preprocessed using
the Python strip() and replace() methods, and added to a temporary collector or temp list.
Finally, temp is added to the main dataSet collector:

temp = [upc, title, price,
    rating.replace('star-rating','').strip(),
    stockQty.split('(')[0].strip(),
    stockQty.split('(')[1].replace('available', '')
    .replace(')', '').strip(), articleLink, imageSrc]
dataSet.append(temp) # append temp list details to main dataSet.

Important note
strip() cleans or removes the extra whitespaces from the left and right of a string. replace()
is used to replace a character with something else. The append() method of Python’s list()
is used to add/push elements to the existing Python list() object. Please refer to https://
docs.python.org/3/library/index.html for more details.

https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html

Using Selenium to Scrape the Web190

With the required data being collected, driver.back() loads the listing page again (it provides
immediate history, similar to the back button available in the browser window) and iterates over the
next list element available. Selenium WebDriver supports browser history related controls with
the back() and forward() methods:

Go back to history (From individual book detail page to listings
page)
driver.back()

As there are multiple pages in the Childrens category, the code iterates for the pages with a
pagination (True) value and searches for the link with the next text. Python exception handling
is used in this example to verify whether the element exists or not with the next text:

•	 If the element exists, the page count is incremented and another listing page is loaded

•	 If the element does not exist, it is caught with the NoSuchElementException exception,
which disables the page loop by updating the pagination Boolean value to False:

try:
    # Check for Pagination with text 'next' in the
      Listing page
    driver.find_element(By.LINK_TEXT,'next').click()
    page = page+1
except NoSuchElementException:
    pagination = False
    print(f "Further Pagination is not possible,
        currently at {page}")

Important note
For more information on exception handling, please visit the following links: https://docs.
python.org/3/tutorial/errors.html and https://selenium-python.
readthedocs.io/api.html.

Upon the completion of loops for pages and listings, the final data collected in dataSet is given
planned column names listed in a list, ['Upc', 'Title', 'Price', 'Rating', 'Stock',
'Stock_Qty', 'Url', 'Image'], and used to create a CSV and JSON file.

https://docs.python.org/3/tutorial/errors.html
https://docs.python.org/3/tutorial/errors.html

Scraping using Selenium 191

Example 2 – forms and searching

In Example 2, we will use Selenium to log in, log out, and go through available pages for collecting
various quotes-based data from http://quotes.toscrape.com/. Similar to Example 1, we
will locate and process the link that contains the Login text from http://toscrape.com.

The following code searches for an anchor element with the Login text and collects the href
attribute. The click() action is applied to the Login element. This loads the http://quotes.
toscrape.com/login page. WebDriver has a few attributes, such as current_url. This
attribute returns the URL of the page loaded in the browser:

mainUrl=https://toscrape.com/
driver.get(mainUrl)  # loads toscrape.com
loginPage = driver.find_element(By.LINK_TEXT,
    "Login").get_attribute('href')
print(loginPage)
http://quotes.toscrape.com/login

driver.find_element(By.LINK_TEXT, "Login").click()

print(f"Before Login : {driver.current_url}")
http://quotes.toscrape.com/login

The element with the Login text is near the footer section of the page loaded, and we need to scroll
down to view the element. If the browser window has a vertical scrollbar (depending on the dimensions
of the window, if configured), the driver.find_element(By.LINK_TEXT, "Login").
click() code will scroll down the page vertically till the element with the Login text is visible,
and then click on it. This is a reduction of the window scrolling related code that had to be coded in
versions before 4.1.0.

The http://quotes.toscrape.com/login page contains the HTML <form> element
with a few inputs and a submit button. The form accepts any credentials, such as username=test and
password=test. Since <input> types have to be filled with credentials, they are identified first, cleaned
using clear(), and finally, the text value is entered using send_keys(). These actions automate
scrolling or moving up to the element, clicking the element, and typing characters:

username = driver.find_element(By.ID, "username")
username.clear()  # cleans if there exist any characters
username.send_keys("test") # value entered
password = driver.find_element(By.ID, "password")
password.clear()
password.send_keys("test")

http://quotes.toscrape.com/
http://toscrape.com
http://quotes.toscrape.com/login
http://quotes.toscrape.com/login
http://quotes.toscrape.com/login

Using Selenium to Scrape the Web192

With username and password values provided to the respective input elements, form submission
has to be done. Submit-related methods were available in versions before 4.0, but we can achieve the
same thing by locating the button that submits form values and clicking it (using the click() method):

driver.find_element(By.CLASS_NAME,'btn').click()
click submit button
quotesUrl = driver.current_url
print(f"After Login : {quotesUrl}") http://quotes.toscrape.com/
logoutUrl = driver.find_element(By.LINK_TEXT,
    "Logout").get_attribute('href')
print(f"Logout : {logoutUrl}") http://quotes.toscrape.com/logout

Upon submitting the login form, you will notice that there is a link with the Logout text and the
http://quotes.toscrape.com/logout URL. This validates that the login-related step has
been successfully completed.

Important note
Readers and developers will find the processing of the HTML form quite easy. The HTTP
POST method is submitted with payload data (username, password, and csrf_token)
if traced using DevTools.

There are multiple quotes <div> blocks on the page with the pagination element (driver.
find_element(By.CSS_SELECTOR,'li.next a').click()). quotes identifies each
individual block of the quote located using find_elements(). Pagination is managed using
Boolean values and the required or planned data is extracted from each quote block. Finally, the
data is added to the main dataSet collector:

quotes = driver.find_elements(By.CSS_SELECTOR,
    "div.row .quote")
for quote in quotes: # Iterate quotes available
    content =
        quote.find_element(By.CSS_SELECTOR,'.text').text
    author =
        quote.find_element(By.CLASS_NAME,"author").text
    authorLink =
        quote.find_element(By.PARTIAL_LINK_TEXT,"about")
            .get_attribute('href')
    authorGoodread =
        quote.find_element(By.PARTIAL_LINK_TEXT,"Goodread")
            .get_attribute('href')
    tags =
        quote.find_element(By.TAG_NAME,'meta')
            .get_attribute('content')

Summary 193

    …….
    # Add values to dataSet
    dataSet.append([author, content, tags, tag_count,
        authorLink, authorGoodread])

With the completion of the pagination loop and quotes from each page, finally, the logout action is
performed. After logout, the browser loads the http://quotes.toscrape.com page:

driver.get(logoutUrl)
print(f"Current URL: {driver.current_url}")
http://quotes.toscrape.com/

With data in hand or in the main dataSet collector, this data can be written as a CSV file (using
the 'author','quote','tags','tag_count','author_url', 'goodread_url']
header) or a JSON file. Finally, the browser loaded by WebDriver is closed using driver.quit().

The web-scraping examples in this section used various identifiers, locators, attributes, and methods
from the selenium library. WebDriver is effective for automating tasks, either repetitive or
non-repetitive. Web application-related testing is commonplace where Selenium is used, but we have
explored it for scraping purposes. To explore Selenium further, please explore the content and links
shared in this chapter.

Summary
The Selenium framework has many features and is widely used for application testing and browser
automation. Exploring its features, we learned how to use WebDriver for scraping-related tasks. Python
programming does have independent libraries to deal with HTML or web content, browser properties,
networking, parsing, and more. Selenium can be used to process such features independently, and it
is a major advantage that Selenium holds over various other Python libraries. The framework is also
updated continuously, enriching the platform with testing, automation, and developer-friendly features.

In the next chapter, we will learn about regular expressions and using them to extract or scrape data.

Further reading
•	 Selenium:

	� https://selenium-python.readthedocs.io/

	� https://developer.mozilla.org/en-US/docs/Web/HTML

	� https://www.lambdatest.com/blog/selenium-webdriver-tutorial-
with-examples/

http://quotes.toscrape.com
https://www.lambdatest.com/blog/selenium-webdriver-tutorial-with-examples/
https://www.lambdatest.com/blog/selenium-webdriver-tutorial-with-examples/

Using Selenium to Scrape the Web194

•	 Browser Automation:

	� https://www.browserstack.com/guide/what-is-browser-automation

	� https://community.dataquest.io/t/web-scraping-without-
selenium/456297

•	 Automation Practice Site:

	� https://www.automationexercise.com/

	� https://practicetestautomation.com/practice-test-login/

•	 Chromium: https://chromedriver.chromium.org/documentation

•	 Puppeteer, Playwright:

	� https://pptr.dev/

	� https://playwright.dev/

https://community.dataquest.io/t/web-scraping-without-selenium/456297
https://community.dataquest.io/t/web-scraping-without-selenium/456297
https://practicetestautomation.com/practice-test-login/
https://chromedriver.chromium.org/documentation
https://pptr.dev/
https://playwright.dev/

9
Using Regular

Expressions and PDFs

So far, we have learned about and explored some of the core Python libraries in the context of web
communication, content reading, and browser automation, for data finding and extraction.

Regular expressions (also referred to as Regex, regex, or RegEx – we will use regex throughout the
rest of this chapter) are built using a predefined set of characters to form a pattern used for searching
and similar activities. In Chapters 3 and 4, when carrying out web scraping, we tested and applied
various available features, such as CSS selectors, XPath, and PyQuery, to find and locate specific types
of activities. Regex helps us with pattern matching – we are knowingly or unknowingly using regex
most of the time while working on documents or any textual content.

In a data-related context, it is very hard to avoid activities such as finding, searching, and matching.
Regex provides us with a simple and elegant approach to dealing with such activities. Data is available
in structured or unstructured formats in various forms and types of documents. Portable Document
Format (PDF) is a secure, feature-enabled, nicely compressed document format that is easily transferred
over the internet. PDF is different in comparison to other textual document formats. We will learn
about data extraction from a PDF in this chapter.

In this chapter, we will learn about the following topics:

•	 Overview of regex

•	 Regex with Python

•	 Using regex to extract data

•	 Data extraction from a PDF

Using Regular Expressions and PDFs196

Technical requirements
A web browser (Google Chrome or Mozilla Firefox) will be required and we will be using JupyterLab
for the Python code.

Please refer to the Setting things up and Creating a virtual environment sections in Chapter 2 to continue
setting up and using the environment created. Refer to https://pypdf2.readthedocs.io/
en/3.0.0/user/installation.html to install PyPDF2.

The Python libraries that are required for this chapter are as follows:

•	 requests

•	 re

•	 pypdf2

The code files for this chapter are available online in this book’s GitHub repository: https://
github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-
Edition/tree/main/Chapter09.

Overview of regex
There are plenty of cases when it’s quite hard or even impossible to locate some web-based content or
elements with XPath and CSS selectors. Fortunately, we can overcome such situations using a regex.
A regex is an expression built using strings that is used to find or search content by identifying an
existing pattern.

In web scraping and extraction-related activities, a regex is also used as a final or firsthand pattern-
matching option. Patterns can be defined using various steps, often accompanied by special notations
that represent predefined rules. A regex is like grouping and writing plain text, and many libraries and
text-related features exist that use these expressions, providing us with handy, easy-to-use functions.

The latest code editors, document readers, and writing programs all provide facilities such as searching
in files, multiple pages, and inside project folders, and using find and replace. To use these options, we
need to input text or a regex; in any case, pattern matching or a regex will be used to search through
the content.

A regex is usually used when other options haven’t worked, or sometimes it’s even the preferred method
used. The scope can be extended to a few important features, such as the following:

•	 Splitting or breaking down the content into chunks, also known as exploding or slicing the
contents into pieces

•	 Finding all or more than one match

•	 Substituting or replacing content based on a pattern

https://pypdf2.readthedocs.io/en/3.0.0/user/installation.html
https://pypdf2.readthedocs.io/en/3.0.0/user/installation.html
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/tree/main/Chapter09
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/tree/main/Chapter09
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/tree/main/Chapter09

Regex with Python 197

Listed here are some of the common use cases where regex is used extensively during data extraction:

•	 Validating email addresses

•	 Matching or collecting the zip code or postal code from addresses

•	 Matching the latitude and longitude from geo-addresses

•	 Finding the number of items listed on a page

•	 Verifying phone/mobile numbers

•	 Validating the date and time

•	 Extracting content using a generated (user-defined) pattern

Regex can be defined and run in most text-supporting applications or services. The quite simple,
elegant-looking expressions can be used to deal with any type of use case. Its availability and scalability,
depending on the content, make it a powerful text feature. Please visit https://www.regular-
expressions.info/ and https://developer.mozilla.org/en-US/docs/Web/
JavaScript/Guide/Regular_expressions for detailed information about regex.

Important note
The Unix/Linux-based grep (global regular expression print) command is very powerful and
famous among Unix/Linux users and developers. grep is used to match and filter patterns
and is even considered a pattern-matching engine. Please visit https://www.gnu.org/
software/grep/ for more detailed information.

In the next section, we will be exploring regex in more detail and using the re Python library in a
practical example.

Regex with Python
Python programming is known for its simple, readable, reusable, and short code. Python is also popular
because of its scientific computing and text computation features (natural language processing (NLP),
sentiment analysis (SA), and many more). Regex is also one of the core powers of Python as re (the
regex library) is provided as a system or built-in library that is available with Python installation.

Let’s dive deep into re and have a look at some of the features using code. For this example, we will
use the following famous quote from Sadhguru (available at https://isha.sadhguru.org/
us/en/wisdom/type/quotes):

If you do not turn against yourself, the Human Potential is limitless.

https://www.regular-expressions.info/
https://www.regular-expressions.info/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_expressions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_expressions
https://www.gnu.org/software/grep/
https://www.gnu.org/software/grep/
https://isha.sadhguru.org/us/en/wisdom/type/quotes):
https://isha.sadhguru.org/us/en/wisdom/type/quotes):

Using Regular Expressions and PDFs198

We have defined a Python variable named quote that contains the preceding quote as its value:

quote="If you do not turn against yourself, the Human Potential is
limitless"

In the coming sections, we will find words that are at least three characters long or where the length
of the string is three, using re methods that are common for data-related tasks.

re (search, match, and findall)

Python’s re library provides various types of search-related methods. A few of the common ones that
are generally used to search patterns within any code are listed here:

•	 search(): Looks for a match with a given pattern everywhere in the string and returns the
first object that matches (re.Match). As seen in the preceding code, only you or the first
match found in the quote string is returned.

•	 match(): This method looks for a match at the start of the string. In the case of the preceding code,
it does not match anything. re.match(), on success, also returns various functions (start,
end, span, group, groups, and more) and attributes (lastindex and lastgroup), which
is informative in any case but more useful when using it with re.finditer(). Please visit
https://docs.python.org/3/library/re.html?highlight=regular%20
expressions#functions for more detailed information.

•	 findall(): This method accepts a pattern to search for all the matches in the string. It’s
similar to iterating the search() method, from start to end.

In the upcoming subsections, we will be learning how to generate regex and apply it using examples.

Regex using a set of characters

In regex, we can look for a set of characters by using []. As seen in the following code, [a-z] looks
for any combination of words that are made up of characters from a to z :

re.search(r"([a-z]{3})",quote) # <re.Match object; span=(3, 6),
match='you'>

In the preceding code, to fix the length or check the occurrences, we use {}; so {3} in the expression
[a-z]{3} is looking for a match of words that are made up of a maximum of three alphabetical
characters (for example, you, not, and the).

Generally, regex patterns are provided as a string preceded by the r character. r"[a-z]" is a string
but is also regex, and is also known as a raw string. In addition, we need to be careful about the
character casing too (lowercase or uppercase) as regex patterns are case sensitive. In general cases, we

https://docs.python.org/3/library/re.html?highlight=regular%20expressions#functions
https://docs.python.org/3/library/re.html?highlight=regular%20expressions#functions

Regex with Python 199

can apply flags=re.IGNORECASE to ignore the text case, as seen in the following example. We
can also see that a combination of all three characters is being returned in the following code block:

re.findall("([a-z]{3})",quote)
['you', 'not', 'tur', 'aga', 'ins', 'you', 'rse', 'the', 'uma',
'ote', 'nti', 'lim', 'itl', 'ess']
re.findall(r"([a-z]{3})",quote, flags=re.IGNORECASE)
['you', 'not', 'tur', 'aga', 'ins', 'you', 'rse', 'the', 'Hum',
'Pot', 'ent', 'ial', 'lim', 'itl', 'ess']

Regex using escaped code

Apart from mentioning a set of characters, we can also use a sequence of characters. For example,
\w represents any alphanumeric character and \w{3} represents any word with a total of three
characters, as shown here:

re.findall(r"\w{3}",quote)
#['you', 'not', 'tur', 'aga', 'ins', 'you', 'rse', 'the', 'Hum',
'Pot', 'ent', 'ial', 'lim', 'itl', 'ess']

Similarly, \s matches whitespaces (space, tab, and newlines). The number of repetitions and occurrences
can also be determined with the quantifiers listed here:

•	 *: Zero or more of the words in the expression.

•	 +: One or more than one of the words in the provided expression.

•	 ?: Matches zero or one of the words in the expression (also known as a lazy quantifier).

•	 {,}: Matches unlimited characters. Occurrences work with a scope of {minimum, maximum}.
Here are a few examples:

	� {2,10}: Matches from 2 to 10 characters

	� {,5}: Matches up to five characters

	� {2,}: A minimum of two characters

	� {3}: Match occurrences of every three character

Regex using concatenation

Another major benefit of regex is that it can be concatenated. Take the following examples:

•	 \s+(\w{3})\s+: Matches any words that are three characters in length and have at least
one or more space before and at the end of the word

•	 \s*(\w{3})\s*: Matches any words that are three characters in length and have zero or
multiple spaces before and at the end of the word

Using Regular Expressions and PDFs200

In the following code, lots of regex have been used (regarding the length, set, and occurrences of
the characters):

re.findall(r"\s*(\w{3})\s*",quote)
['you', 'not', 'tur', 'aga', 'ins', 'you', 'rse', 'the', 'Hum',
'Pot', 'ent', 'ial', 'lim', 'itl', 'ess']
re.findall(r"\s+(\w{3})\s+",quote)         # ['you', 'not', 'the']
re.findall(r"\s+([a-z]{3})\s+",quote)          # ['you', 'not', 'the']

Here is a brief explanation of some of the regex used in the preceding code:

•	 Set of characters or [] (square brackets):

	� [A-Z]: Set of uppercase characters

	� [a-z]: Set of lowercase characters

	� [0-9]: Set of numeric characters from 0 to 9

Important note
The expression [a-zA-Z0-9] matches all alphanumeric characters. In addition, in regex,
characters other than [A-Z0-9a-z] are written as escaped characters (\, for comma, \? for
the question mark character, and \+ for the + character). The set of characters can also contain
special or escape characters; for example, [0-9\+\-\.] means containing the numbers 0-9
and the +, -, and . characters or any combination of these numbers and characters.

•	 Round brackets () within the expression are used to hold a group of matching values. For
example, r"([a-z]+)[0-9]{3}" holds values matching one or more characters from a to z.

•	 Escape code, sometimes also known as predefined shortcuts, is escaped with \. Here are some
examples of escape code:

	� \s: Represents space (keyboard space bar) characters or whitespaces; for example, \s+
adds one or more spaces

	� \n: Newline character, used with multi-line content

	� \t: Tab character

	� \S: Non-whitespace

	� \w: Matches alphanumeric characters; is similar to [a-z0-9A-Z]

	� \W: Matches non-alphanumeric characters; is the opposite of \w

	� \b: Matches the word boundary

	� \B: Matches the non-word boundary

Regex with Python 201

	� \d: Matches a digit or [0-9]

	� \D: Matches a non-digit

Important note
Escape characters or code are to be used carefully as they are case-sensitive. For example, \w
and \W have the completely opposite effect.

Regex also supports the OR logical operation by using | (pipe) in the pattern. In the expression
r"([A-Z]\w+ | [a-z]\w+)", it matches [A-Z]\w+ or [a-z]\w+, which results in returning
all words in any case:

matches = re.findall(r"([A-Z]\w+|[a-z]\w+)",quote)
matches # ['If', 'you', 'do', 'not', 'turn', 'against', 'yourself',
'the', 'Human', 'Potential', 'is', 'limitless']

Besides the features of regex explored in this section, there are some more important methods and
expression syntaxes. To explore this further, let us count the total words in the quote string in the
next section.

In the next section, we will use re’s split() method to create chunks based on matched expressions
or provided criteria such as characters.

re.split

An example of re.split() working on an expression is provided in the following code. The
Python split() string-based method uses space as the default splitting character. As seen in the
following code, \s or space is used to split all words in the quote, as we mentioned in the Overview
of regex section:

words = re.split("\s",quote)
words
['If', 'you', 'do', 'not', 'turn', 'against', 'yourself', 'the',
'Human', 'Potential', 'is',  'limitless']
print(f"Total words in quote: {len(words)}")          
Total words in quote: 12
wordsA = re.split("\,",quote)
['If you do not turn against yourself', ' the Human Potential is
limitless']
print(f"Total words in wordsA: {len(wordsA)}")
Total words in wordsA: 2

Python’s re also supports replacement or substitution using the sub() method. In the next section,
we will use re.sub().

Using Regular Expressions and PDFs202

re.sub

re.sub() works exactly the same as find and replace or the string replace() method. In the
following code block, the r"(H[a-z]+)" expression matches any word starting with H and a
combination of one or more characters in the range [a-z] and is replaced with HumanBeing:

newQuote = re.sub(r"(H[a-z]+)",'HumanBeing',quote)
newQuote
If you do not turn against yourself, the HumanBeing Potential is
limitless

In the following code, \, matches , (comma), which is replaced, using sub(), with a null or
empty value:

newQuoteA = re.sub(r"\,",'',quote)
If you do not turn against yourself the Human Potential is limitless

There’s also a method that returns an object based on our pattern, called compile(). In the next
section, we will be exploring re.compile() along with some important regex fundamentals.

re.compile

As the method name suggests, re.compile() compiles a regex and creates a pattern object. Using
a pattern object is not compulsory but it makes the code more readable and scalable.

In the following code, we have a Python list called languages, containing the names of various
programming languages:

languages = ["Javascript","Python","Go","Java","Kotlin",
"PHP","C#","Swift","R", "Ruby","C","C++","Matlab",
"TypeScript","Scala","SQL","HTML","CSS","NoSQL", "Rust", "Perl"]
vowel_start = r"^[AEIOU]"
vowel_end = r".*[aeiouAEIOU]$"
print(f" Expression {vowel_start}, Type:{type(vowel_start)}")
Expression ^[AEIOU], Type:<class 'str'>

We have defined two regex patterns, as listed here:

•	 vowel_start: Checks whether the elements in languages start with a vowel (case-sensitive)

•	 vowel_end: Checks whether elements in languages end with vowels (case-insensitive)

It’s also to be noted that although vowel_start and vowel_end are defined to hold regex, they
are still string objects.

Regex with Python 203

Listed here are a few regex characters, as found in vowel_start and vowel_end:

•	 ^ (caret): This is a positional character. It matches the start position or beginning of the string.
For example, (^\d+) looks for any pattern that starts with a digit.

When ^ is used inside a set of characters, it works as a negation or exclusion. For example,
[a-z] matches characters from a to z, whereas [^a-z] matches anything except for characters
from a to z.

•	 $: This is also a positional character, which matches the end position. For example, (\d+$)
matches a string that ends in a digit. The r".*[aeiouAEIOU]$" expression looks for an
end character that matches any of the following: aeiouAEIOU.

•	 . (dot or period): This matches any character but not a newline or \n. For example,
r".*[aeiouAEIOU]$" matches any word that has any number of characters and ends in
one of the characters aeiouAEIOU as the ending character.

Having defined the expressions, let’s compile them. re.compile(expression) creates an object
of the re.Pattern (patternS and patternE) type:

patternS = re.compile(vowel_start)
patternE = re.compile(vowel_end)
print(f"{patternS}, {type(patternS)}")
re.compile('^[AEIOU]'), <class 're.Pattern'>

print(dir(patternS))
['__class__',….', 'findall', 'finditer', 'flags', 'fullmatch',
'groupindex', 'groups', 'match', 'pattern', 'scanner', 'search',
'split', 'sub', 'subn']

The compile() method is provided with instructions in the form of regex. After compilation, we can
use the compiled set of expressions where necessary, as seen in the preceding and following code blocks.

As seen in the following code, list iteration is performed to check the patterns using re.match(),
which results in only three matches, that is, the language names that end in vowels:

for language in languages:
    if re.match(patternS, language):
        print(f"{language} starts with vowel character")
    if re.match(patternE, language):
        print(f"{language} ends with vowel character")
Output----
Go ends with vowel character
Java ends with vowel character
Scala ends with vowel character

Using Regular Expressions and PDFs204

Pattern objects possess various methods. A few of them have been used in the preceding code. There
are plenty more that can be used, for which a complete study of regex is required. For more details,
visit https://www.regular-expressions.info/.

Building regex is quite challenging. Any particular task can be handled with one or more expressions.
There is no correct way to write expressions, but learning the basics of regex will be helpful.

In the next section, we will see multiple ways of handling entities that are written using regex, with
re functions, and the logical steps to follow.

Regex flags

Regex flags are often considered additional top-ups or enhancements over basic expressions. There
are various types of flags available, but the most common ones are as follows:

•	 re.IGNORECASE: This flag ignores the case-sensitive (lower or uppercase) issue, a short
version can be used (re.I), and it can be used inline with (?i).

•	 re.MULTILINE: This flag helps to search and match a pattern in an expression that is distributed
across multiple lines. It can be shortened to re.M or written as (?m) inline.

As seen in the following code block, the sentence Python variable is a multi-line string if declared
with HTTP header-related values. There are also newline (\n) characters. Let’s explore various ways
of achieving the regex results, with and without flags:

sentence="""Accept:text/html,application/xhtml+xml,application/
xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/
signed-exchange;v=b3;q=0.7\n Accept-Encoding: gzip, deflate\nAccept-
Language: en-US,en;q=0.9\nCache-Control: max-age=0\nConnection: keep-
alive\nCookie: ci_session=%22session_id%22404495f061c71aca87121e\
nHost: anishchapagain.com\nIf-Modified-Since: Sun, 1 Apr 2023
11:22:33 GMT\nIf-None-Match: 64a-5f9724a6cdcf2-gzip\nUpgrade-
Insecure-Requests: 1\nUser-Agent: Mozilla/5.0 (Windows NT 10.0;
Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0
Safari/537.36"""

Python re methods accept the flags parameter. As seen in the following code, in
re.findall("(if.*)",sentence, flags = re.IGNORECASE), re.IGNORECASE
is passed to the flags argument:

re.findall("(if.*)",sentence) ['if,image/webp,image/
apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7', 'ified-Since:
Sun, 1 Apr 2023 11:22:33 GMT']
re.findall("(if.*)",sentence, flags = re.IGNORECASE) ['if,image/
webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7',
'If-Modified-Since: Sun, 1 Apr 2023 11:22:33 GMT','If-None-Match:
64a-5f9724a6cdcf2-gzip']
re.findall("(If.*)",sentence)
['If-Modified-Since: Sun, 1 Apr 2023 11:22:33 GMT', 'If-None-Match:
64a-5f9724a6cdcf2-gzip']

https://www.regular-expressions.info/

Regex with Python 205

The difference in the output can be seen in the preceding code block when re.IGNORECASE is supplied.

Apart from the output, we can also modify or change the preceding code with some short forms; for
example, re.findall("(if.*)",sentence,flags = re.IGNORECASE) can also be
written as follows:

•	 re.findall("(if.*)",sentence, re.IGNORECASE)

•	 re.findall("(if.*)",sentence, flags = re.I)

•	 re.findall("(if.*)",sentence, re.I)

•	 re.findall(r"(?i)(if.*)",sentence) (this is inline flag notation; (?i) means
the same as re.I)

In the following code, the re.MULTILINE flag is used in a multi-line string and outputs can be
easily distinguished with and without the use of the flag regex:

re.findall (r"^Accept.*", sentence)
['Accept:text/html,application/xhtml+xml,application/xml;q=0.9,image/
avif,image/webp,image/apng,*/*;q=0.8,application/signed-
exchange;v=b3;q=0.7']
re.findall (r"^Accept.*", sentence, flags = re.MULTILINE)
['Accept:text/html,application/xhtml+xml,application/xml;q=0.9,image/
avif,image/webp,image/apng,*/*;q=0.8,application/signed-
exchange;v=b3;q=0.7', 'Accept-Encoding: gzip, deflate', 'Accept-
Language: en-US,en;q=0.9']
re.findall(r"(?m)^Accept.*",sentence) # inline flag (?m) multi-line
['Accept:text/html,application/xhtml+xml,application/xml;q=0.9,image/
avif,image/webp,image/apng,*/*;q=0.8,application/signed-
exchange;v=b3;q=0.7', 'Accept-Encoding: gzip, deflate', 'Accept-
Language: en-US,en;q=0.9']

The re.findall (r"^Accept.*",sentence,flags=re.MULTILINE) expression can
also be written as follows:

•	 re.findall(r"^Accept.*",sentence, re.MULTILINE)

•	 re.findall(r"^Accept.*",sentence, flags = re.M)

•	 re.findall(r"^Accept.*",sentence, re.M)

•	 re.findall(r"(?m)^Accept.*",sentence) (inline flag)

Flags can also be applied together; for example, flags=re.MULTILINE|re.IGNORECASE will
impose both flags, as shown here:

re.findall(r"^accept.*",sentence, re.MULTILINE|re.IGNORECASE)
re.findall(r"^accept.*",sentence, re.M|re.I)
re.findall(r"(?im)^accept.*",sentence) # (?im) the inline flag
together

Using Regular Expressions and PDFs206

The preceding code will result in the following output:

['Accept:text/html,application/xhtml+xml,application/xml;q=0.9,image/
avif,image/webp,image/apng,*/*;q=0.8,application/signed-
exchange;v=b3;q=0.7',
'Accept-Encoding: gzip, deflate',
'Accept-Language: en-US,en;q=0.9']

As seen in the preceding code blocks, inline flags are mentioned prior to the expression and preceded
with ?, for example, (?i) or (?im).

Important note
For more detailed information on writing expressions, flags, and regex in general, do explore
these links: https://www.regular-expressions.info/, https://regex101.
com/ (you can use this link to practice and generate code too), https://developer.
mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_expressions/
Cheatsheet, and https://learnbyexample.github.io/python-regex-
cheatsheet.

In the next section, we will be using regex in web responses for data extraction.

Using regex to extract data
In the previous sections of this chapter, we explored various aspects of regex, with examples. Regex
can be applied to all types of content – such as content analysis, extendibility, and time and resource
(machine) analysis. This analysis is important to figure out which extraction-related options to choose,
such as XPath, CSS selectors, and PyQuery.

Important note
It’s often mentioned in the literature that regex should only be applied when the content is
unstructured (for data extraction), but this is not the case. Regex can be used in any type of
content (structured or unstructured).

To extract data, from a scraping point of view, we’ll explore a few examples using regex and explore
some of its functionality and properties.

Example 1 – Yamaha dealer information

In this example, we will be collecting information on motor dealers (dealers’ geo-location, more
precisely) from https://yamaha-moto.cfaomotors.ng/en/dealership/yamaha-
nigeria-cfao-motors. The data to be collected is Dealer_ID, Name (Dealer Name),
City (Location), Latitude, and Longitude.

https://www.regular-expressions.info/
https://regex101.com/
https://regex101.com/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_expressions/Cheatsheet
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_expressions/Cheatsheet
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_expressions/Cheatsheet
https://learnbyexample.github.io/python-regex-cheatsheet
https://learnbyexample.github.io/python-regex-cheatsheet
https://yamaha-moto.cfaomotors.ng/en/dealership/yamaha-nigeria-cfao-motors
https://yamaha-moto.cfaomotors.ng/en/dealership/yamaha-nigeria-cfao-motors

Using regex to extract data 207

To begin with, the page content or source is collected using the Python requests library:

url="https://yamaha-moto.cfaomotors.ng/en/dealership/yamaha-nigeria-
cfaomotors"
source = requests.get(url).text

In this case, because of the use of regex, we can find the desired data within the HTML tags (the page
source of the url variable). The dealer-related content is found inside the <script type="text/
javascript">…</script> tags in the page source. There were only a few dealers listed; so,
as seen in the following code, using regex makes it easier to collect the dealer data. With pattern
identification, map_markers is formed:

map_markers = re.findall(r"map_markers.*\[\[(.*)\]\]\;",source)

The map_markers Python list returns a successful result with dealer data in a list using re.findall():

AUSTINE BEST VENTURES LTD - Igbo-Ora",7.435186,3.2874431,"261","\/
media\/gamme\/marques\/graph\/8-map-pointer-yamaha-
moto.png"], ["BLESSED DEN-RACH DYNAMIC VENTURES LTD -
Enugu",6.9162632,7.5184719,"257","\/media\/gamme\/marques\/graph\/8-
map-pointer-yamaha-moto.png"],["OLUSOLA COMMERCIAL ENTERPRISES - Ib
adan",7.478631,3.9137284999999,"260","\/media\/gamme\/marques\/
graph\/8-map-pointer-yamaha-moto.png"],["S. AKINMADE NIGERIA LTD - Aku
re",7.2455287,5.1887157,"259","\/media\/gamme\/marques\/graph\/8-map-
pointer-yamaha-moto.png"

Each dealer’s data was returned in an incomplete Python list structure or separated by "],. With the
separation logic in hand, splitting or breaking down the map_markers data into pieces will be a
suitable option. This is done using re.split(), as seen in the following code:

markers = re.split(r"\]\,", map_markers[0])

The markers Python list returns multiple dealers’ data. It requires iteration to collect individual
dealers’ data.

As seen in the map_markers list in the preceding code, the text is not normal. It contains characters
that need to be cleaned using re.sub(r"\[|\"|\'",'',marker). Cleaned strings are further
broken apart with re.split(r"\,",marker) for a list containing data, and finally added to
dataSet or the container for the dealer data:

for marker in markers:
    marker = re.sub(r"\[|\"|\'",'',marker)  # cleaning
    details = re.split(r"\,",marker)  # break apart
    …..
    nameCity = re.split("\s+\-\s+",details[0])
    name = nameCity[0]
    city = nameCity[1]
    dataSet.append([id,name,city, lat,lng])

Using Regular Expressions and PDFs208

dataSet will result in the data looking as shown here:

[['261', 'AUSTINE BEST VENTURES LTD', 'Igbo-Ora', '7.435186',
'3.2874431'],
….
['259', 'S. AKINMADE NIGERIA LTD', 'Akure', '7.2455287', '5.1887157']]

With all the data collected, CSV and JSON files are created.

As seen in the preceding code blocks, re’s findall, sub, and split methods are used in multiple
places and at different times, and play a very important role in data extraction.

Example 2 – data from sitemap

In this example, we will extract data from sitemap links available at https://www.zyte.com/
post-sitemap.xml.

As the sitemap file is in JSON format, it contains some system and user-defined tags. source collects
the web response using Python requests:

url="https://www.zyte.com/post-sitemap.xml"
source = requests.get(url).text

The portion of the output from source or the content for a single link found in sitemap.xml looks
as in the following code block – there are multiple links with similar output that are to be identified,
extracted, and collected for extracting required data:

<url>
    <loc>https://www.zyte.com/blog/json-parsing-with-
        python/</loc>
    <lastmod>2023-04-06T14:42:05+00:00</lastmod>
</url>

The data we are interested in from the links is as follows:

•	 Type: The category, such as a blog, webinar, or uncategorized text extracted from <loc>

•	 Topic: Link text or title text available in links, which is displayed after the type, which we
defined previously

•	 Date: The Y-M-D value found in <lastmod>

•	 Time: The H:M:S value in <lastmod>

Here, as there are identifiable XML tags (<loc> and <lastmod> for each link or <url>) in
source, we will collect all available <loc> and <lastmod> details separately. locs collects

Using regex to extract data 209

the data from all available <loc>..</loc> markups; similarly, mods lists the content from all
<lastmod>..</lastmod> markups:

locs = re.findall(r"\<loc\>(.*)\<\/loc\>",source)
mods = re.findall(r"mod\>(.*)\<\/last",source)

locFinals is a Python list that contains individual elements from locs and mods as a tuple. The
zip(locs, mods) Python function works as a merger that combines the argument passed to it
and creates a tuple with the value from iterated locs and mods:

locFinals = list(zip(locs,mods))
print(locFinals[0])   # (locs[0], mods[0])
('https://www.zyte.com/blog/json-parsing-with-python/', '2023-04-
06T14:42:05+00:00')

locFinals has multiple elements. Iteration is initiated along with unpacking the tuple and cleaning
plus splitting the data (using re.sub() and re.split()) into chunks to retrieve the desired data:

for locFinal in locFinals:
    loc, datetime = locFinal
unpacking tuple (extracting tuple elements)
    loc = re.sub('^(http\:|https\:)','',loc)
cleaning
    loc = re.sub('[\/]{2}','',loc)
    loc = re.sub('\/$','',loc)
    locSplit=re.split(r"\/",loc)
breaking
    category=locSplit[1]
    categoryTopic=re.sub('\-',' ',locSplit[2])
    ymdTime = re.split("T", datetime)
separating date and time
    ymd = ymdTime[0]
    time = re.sub("\+.*","",ymdTime[1])
cleaning

The identified desired data is finally loaded into the dataSet data container:

    dataSet.append(["Zyte", category, categoryTopic, ymd,
        time])
print(dataSet)
[['Zyte', 'blog', 'json parsing with python', '2023-04-06',
'14:42:05'],….,
['Zyte', 'webinars', 'the right data fields for e commerce data
project', '2023-03-21',
'06:17:35'],……]

Using Regular Expressions and PDFs210

As seen in this example, re methods (findall(), sub(), and split()) and the zip() Python
method play a major role. Regex-based extraction can be done effectively and easily by engaging
Python re and in-built methods.

Example 3 – Godfrey’s dealer

In this example, we will extract dealer details from https://godfreysfeed.com/
dealersandlocations.

An HTTP request is initiated using the requests Python library, and the response is collected
as source:

url="https://godfreysfeed.com/dealersandlocations"
source = requests.get(url).text

From source, we will be obtaining the data related to the desired columns, such as Name, Address,
City, State, Zip, Lat, and Lng. Dealer-related data is only available in JavaScript. The data is
also scattered across multiple lines, and it contains some HTML tags, as seen here:

var infoWindowContent = "<div style='overflow:hidden; width:200px'>";
infoWindowContent = infoWindowContent+ "<span
style='color:#e5011c;'>American Cowboy Shop

513 D Murphy Hwy
Blairsville, GA</
strong>
 30512

";
infoWindowContent+='</div>';
var infowindow = new google.maps.InfoWindow({maxWidth: 450});
infowindow.setContent(infoWindowContent);
var latLng = new google.maps.LatLng(34.8752421, -83.9716038);

The regex is defined to collect all coordinate data with the latlngs variable, and contents holds
the address-carrying infoWindowsContent variable. Finally, details is created using Python’s
built-in zip():

latlngs = re.findall(r"var\s+latLng.*\.LatLng\((.*)\)\;", source)
contents = re.findall(r"infoWindowContent\+\s*\"(.*)\"\;", source)
details = list(zip(contents, latlngs))   #zip

Now, we have identified latlngs and contents data in details. Iteration in details is
required, which unpacks the detail tuple into a block of fullAddress and coordinate:

for detail in details:
    fullAddress, coordinate = detail

https://godfreysfeed.com/dealersandlocations
https://godfreysfeed.com/dealersandlocations

Data extraction from a PDF 211

Further cleaning and splitting of fullAddress and coordinate-related content are required to
get the exact data that we are seeking, as shown here:

    fullAddress = re.sub('\<br\>','|',fullAddress)
    # cleans

    fullAddress = re.sub('\|\|$','',fullAddress)
    # cleans || at end
    fullAddress = re.sub('(\<\/?\w+\>)','', fullAddress)
    fullAddress = re.sub('(\<\/?.*\>)', '', fullAddress)
    # cleans ending tags
    fullAddress = re.split('\|',fullAddress)
    name = fullAddress[0]
    address = fullAddress[1]
    city = re.split("\,",fullAddress[2])[0]
    state = re.split("\,",fullAddress[2])[1].strip()
    zipCode = fullAddress[3]
    coordinates=re.split(r"\,",coordinate)
    lat=coordinates[0]
    lng=coordinates[1].strip()

The desired data is obtained and added to the dataSet data container:

    dataSet.append([name, address, city, state, zipCode,
        lat, lng])
print(dataSet[1])
['American Cowboy Shop', '513 D Murphy Hwy','Blairsville', 'GA',
'30512','34.8752421', '-83.9716038']

As found again in this example, re methods (findall(), sub(), and split()) and the Python
zip() function play a major role. Regex-based extraction seems short, targeting the exact content,
and can be done effectively and easily by engaging Python re and using Python’s in-built methods.

Regex is a powerful tool, applicable in all sorts of circumstances, and in the case of collecting data,
it works as well as the parsing tools. Regex, being one of the oldest but most popular technologies, is
still the favorite among developers because of its diverse applicability and usability. There are many
Python libraries, browser-based extensions, CLIs, and query-driven applications that use regex as
their underlying technology.

In the next section, we will be using Python’s PDF-related library to extract data from PDF files.

Data extraction from a PDF
PDF is a rich (in terms of containing document features and formatting) document format that can be
created, shared, and accessed on any supporting device. It is not an understatement to state that PDF
files are everywhere, supported by all kinds of electronic devices and systems. It is also quite useful

Using Regular Expressions and PDFs212

to know that Word documents, PowerPoint presentations, HTML, Jupyter notebooks, analysis reports
from various applications, and many more content types support exporting and saving files as PDF.

We often find various types of data (such as textual, tabular, and images) in a PDF file. In Chapters 3
and 4, we saw how to extract web-based content using Python. Here, we will be using the PyPDF2
Python library to extract data from PDF files.

In the next sections, we will install and explore PyPDF2 from a data extraction perspective.

The PyPDF2 library

PyPDF2 (https://pypdf2.readthedocs.io/en/3.0.0/index.html) is a free, open
source (https://github.com/py-pdf/PyPDF2) Python library to work with PDF files and
is quite famous among Python developers and the community because of its various features.

Listed here are a few of its major functionalities:

•	 Text extraction

•	 Image extraction

•	 Metadata (document details) availability and extraction

•	 File conversion (PDF to Word, and more)

•	 Text modification (PDF files)

•	 Adding a watermark to existing or new PDF files

•	 Adding security, such as password-protecting PDF files

•	 Splitting a PDF file into pages

•	 Merging PDF files into one PDF

•	 Dealing with the page layout, cropping, transformation, and orientation (such as rotating the page)

It should also be noted that PDF files can be created using PDF applications or exported and saved
from another document format. Though PDF files contain the proper formatting of the original
document, their content is not like HTML or markup-based documents. PDF contents are available
in raw format (with line breaks, spaces, and tabs), and the use of regex is almost compulsory to target
and extract the desired information.

Important note
There are plenty of Python libraries that deal with PDF files, such as pdfminer, pdfquery,
xpdf, pdfrw, pikepdf, and pymupdf. PyPDF2 is my favorite among those listed because
of its various features. As explained at https://pypdf2.readthedocs.io/en/3.0.0/
user/installation.html, PyPDF2 can be used for broad use cases, or can just be
focused on a domain, such as crypto (encrypting or decrypting) and image processing.

https://pypdf2.readthedocs.io/en/3.0.0/index.html
https://github.com/py-pdf/PyPDF2
https://pypdf2.readthedocs.io/en/3.0.0/user/installation.html
https://pypdf2.readthedocs.io/en/3.0.0/user/installation.html

Data extraction from a PDF 213

In the next section, we will use PyPDF2 to collect data.

Extraction using PyPDF2

PyPDF2 is a complete package; there are various classes to deal with its different features. We will
be dealing with the PdfReader class (https://pypdf2.readthedocs.io/en/3.0.0/
modules/PdfReader.html) from PyPDF2, for extraction purposes.

As seen in the following code, for extraction, the PdfReader class needs to be imported from
PyPDF2. The target file or file path (pdffile) is provided to PdfReader. reader is an object
that carries methods and attributes from PdfReader:

from PyPDF2 import PdfReader
pdffile = "python_cheat_sheet_v1.pdf" # file path or name
reader = PdfReader(pdfFile)
reader = PdfReader(open(pdffile,'rb'))
dir(reader)
['__class__',…,'_encryption',…,'isEncrypted', 'is_encrypted',
'metadata', 'namedDestinations', 'named_destinations', 'numPages',
'outline', 'outlines', 'pageLayout', 'pageMode', 'page_layout',
'page_mode', 'pages', 'pdf_header', 'read', 'readNextEndLine',
'readObjectHeader', 'read_next_end_line', 'read_object_header',
'resolved_objects', 'stream', 'strict', 'threads', 'trailer',…]

PyPDF2 recently received an update that equipped it with new methods and attributes. There are
also deprecated entities, which you might come across when exploring PyPDF2.

The number of pages in a PDF can be found by using len(reader.pages), and individual page
sources or content can be targeted with page1 = reader.pages[0] (here, index 0 refers to
page 1, 1 to page 2, and so on). With the page number identified, content can be extracted using the
extract_text() method:

page1 =  reader.pages[0]   #point to first page
page1_source = page1.extract_text()   #extract from first page
len(page1_source)          # 964
page1_source[:100]  # Python is a beautiful language. It's easy to
learn and fun, and its syntax is simple yet elegant. Pyt
page1_source
"Python is a beautiful language. It's easy to learn and fun, and
its syntax is simpleyet elegant. …..……. Python Cheat Sheet\n1.
PrimitivesNumbers"

The preceding code loads the PDF file content or pages using PyPDF2. In the examples discussed
next, we will be applying regex to extract the desired content from the PDF.

https://pypdf2.readthedocs.io/en/3.0.0/modules/PdfReader.html
https://pypdf2.readthedocs.io/en/3.0.0/modules/PdfReader.html

Using Regular Expressions and PDFs214

Example 1 – string extraction

Here is the first paragraph from the python_cheat_sheet_v1.pdf PDF file that we want to
extract (the PDF file can be found in this chapter’s GitHub repository):

Figure 9.1: First paragraph of text from the python_cheat_sheet_v1.pdf file

To extract the first paragraph, as seen in Figure 9.1, the regex should be applied to page1_source,
and the content of the first paragraph is returned using Python’s list(), in this case, with an index
of 0 – python_definition[0]:

python_definition = re.findall(r"^(.*?)Check\s*out", page1_source)
python_definition[0]
"Python is a beautiful language. It's easy to learn and fun, and its
syntax is simpleyet elegant. Python is a popular choice for beginners,
yet still powerful enough toto back …….. Whatever the goal, Python's
design makes the programming experiencefeel almost as natural as
writing in English."

In this example, we have learned how to identify content and apply regex to collect the desired content.

Example 2 – tabular content

In this example, we will extract the tabular data found on page 3, as seen in Figure 9.2, of the
GeoBase_NHNC1_Data_Model_UML_EN.pdf file (the PDF file can be found in this chapter’s
GitHub repository), and create a CSV file:

Data extraction from a PDF 215

Figure 9.2: Extracting tabular data from a PDF file

To begin with, let us extract the content from page 3 of the PDF file:

from PyPDF2 import PdfReader
import re
pdfFile="GeoBase_NHNC1_Data_Model_UML_EN.pdf"
reader = PdfReader(pdfFile)
page3 = reader.pages[2]
page3_source = page3.extract_text()
page3_source
'….\nDate  Version  Description  \nSeptember 2002  Draft 01  First
draft for discussion with Nova Scotia  \nJanuary 2003  Draft  Second
draft after discussion with Nova Scotia and major review of the \
nhydro network model through:  \n\uf0b7 Proposal of options  \nMarch
2003  Alpha  Draft version after discussion and decisi ……\nFUTURE
WORK  \nKey word  Description  \n  \n '

The page3 variable (reader.pages[2]) points to page 3. page3_source holds the content
of page3 after deploying the extract_text() function. In the preceding code, the content of
page3_source can be seen, which is in raw format with line breaks.

Using Regular Expressions and PDFs216

With the page source (page3_source) in hand, to match or extract the raw tabular
content from page3_source , the help of regex is required. As found in page3_
source , each row of the table begins with a line break, \n , the month name, followed
by the four-digit year value. page3_split collects the chunks of tabular data from regex –
r"\n(January|August|May|December|February|July|March|September)\
s+([0-9]{4})":

page3_split = re.split(r"\n(January|August|May|December|February|July|
March|September)\s+([0-9]{4})", page3_source)
['National Hydro Network, Data Model – Edition 1.0  2004 -06 \
nGeoBase®  iii REVISION HISTORY  \nDate  Version  Description  ',
'September', '2002', '  Draft 01  First draft for discussion with Nova
Scotia  ', 'January', '2003', '  Draft  Second draft after discussion
with Nova Scotia and major review of the \nhydro network model
through:  \n\uf0b7 Proposal of options  ',……..]

Throughout the new variables and values, cleaning is necessary, and this is done using strip() and
re.sub(). As the data available was in tabular form, a few activities, such as cleaning, splitting, and
substituting, were also required in this example.

Further, to combine the chunks from page3_split and add the values to the final data container,
dataSet, iteration is performed. Iteration is targeted at each of the three elements from page3_split,
and they are accessed with page3_split[i], page3_split[i+1], page3_split[i+2]:

dataSet = []   # data container
for i in range(0, len(page3_split), 3):   
loop through each 3 elements
    x = page3_split[i].strip()   # cleaning Month
    y = page3_split[i+1].strip() # cleaning Year
    z = re.sub(r"\n",'',page3_split[i+2]).strip()
    if re.match(r"December", x):           # case
        zv = re.split(r"(\s{1})",z) # single space
    else:
        zv = re.split(r"(\s{2})",z) # multiple spaces
    ver = zv[0].strip() # version
    del zv[0]   # remove unwanted element
    desc = "".join(zv).strip()   # description
    if re.search(r"FUTURE",desc):  # case
        desc = re.sub(r"(FUTURE.*)$",'',desc).strip()

After retrieving and cleaning the data, dataSet is appended with a Python list() of values
equivalent to a row of a table:

dataSet.append([x+" "+y, ver, desc])
dataSet
[['September 2002', 'Draft 01', 'First draft for discussion with Nova

Summary 217

Scotia'],….,
['May 2004', 'Draft', 'Update from the March Workshop comments.'],….]

Data available in dataSet is saved as a CSV file, which looks like Figure 9.3:

Figure 9.3: Tabular data as a CSV after PDF extraction

It also has to be noted that the CSV file does not possess the exact formatting of the raw table, as seen
in Figure 9.2.

When dealing with PDF extraction in this chapter, we have come across using various functions and
techniques. Using regex was one such option, but the decision of what option to use will differ from
developer to developer. Regex features such as searching, splitting, substituting, finding, and iterating
were quite useful in the examples we explored.

Summary
Regex and its features are popular for use with not only unstructured but also structured data. Regex
provides us with many options, and the code will definitely differ from one use case to another. An
advantage of regex is that it can be applied in various cases; there might be a few more steps to deal
with, but we can focus on the target using regex. The process of PDF extraction is still evolving. While
there are other approaches that can be taken, regex is also one of the most important components of
data-related tasks.

The topics covered in this chapter helped you to gain a practical perspective on using regex as required.
Regex plays an irreplaceable role in the data extraction activity, unaffected by content structures and
document types.

In the next chapter, we will be learning about data mining and data visualization.

Using Regular Expressions and PDFs218

Further reading
•	 Regular expressions: https://regexone.com/, https://www.regular-

expressions.info/tutorial.html

•	 Regular expressions – Python:

	� https://docs.python.org/3/library/re.html

	� https://www.w3schools.com/python/python_regex.asp

•	 Online regex tester and debugger: https://regex101.com/

•	 PDF: https://www.adobe.com/acrobat/about-adobe-pdf.html

•	 PDF – Python:

	� https://pypdf2.readthedocs.io/en/3.0.0/

	� https://nanonets.com/blog/pypdf2-library-working-with-pdf-
files-in-python/

•	 Scrape PDF:

	� https://towardsdatascience.com/scrape-data-from-pdf-files-
using-python-fe2dc96b1e68

	� https://docparser.com/industries/pdf-scraper-data-providers/

https://regexone.com/, https://www.regular-expressions.info/tutorial.html
https://regexone.com/, https://www.regular-expressions.info/tutorial.html
https://www.w3schools.com/python/python_regex.asp
https://regex101.com/
https://www.adobe.com/acrobat/about-adobe-pdf.html
https://nanonets.com/blog/pypdf2-library-working-with-pdf-files-in-python/
https://nanonets.com/blog/pypdf2-library-working-with-pdf-files-in-python/
https://towardsdatascience.com/scrape-data-from-pdf-files-using-python-fe2dc96b1e68
https://towardsdatascience.com/scrape-data-from-pdf-files-using-python-fe2dc96b1e68
https://docparser.com/industries/pdf-scraper-data-providers/

Part 4:
Advanced

Data-Related Concepts

In this part, you will learn advanced concepts that can be practiced and performed after collecting
high-quality scraped data. You will learn how to read the collected data from various sources and
perform activities such as analysis and visualization that help to generate information and patterns
from data. This information will help you in decision-making and so on. You will also learn about
machine learning and deploy your data models to generate information to analyze sentiments from
text, conduct predictions, and so on.

This part contains the following chapters:

•	 Chapter 10, Data Mining, Analysis, and Visualization

•	 Chapter 11, Machine Learning and Web Scraping

10
Data Mining, Analysis, and

Visualization

So far, we have learned about some of the core Python libraries and techniques regarding HTTP/HTTPS
communication, reading content, browser automation, and more from a data extraction perspective.

Data is the new oil (we all agree about this), but solely obtaining or collecting data does not provide
any significant value. Collected data is stored in files (JSON, CSV, and XML), databases, and more.
Stored data needs to be identified, searched, arranged, cleaned, transformed, explored, or modeled
using algorithms and can sometimes be used by many services and applications before there’s any
profit from the information from it.

Various technologies and concepts are involved in identifying and collecting data and processing it
in order to extract some value. Data analysis implements and executes logic and algorithms using
data-related applications and tools to generate valuable information. Visualization, on the other hand,
displays the data in a more presentable format using plots, charts, and much more.

In this chapter, we will discuss topics that are applicable to collecting data. We will also discuss how
to use concepts and techniques that will help us to gain key information and valuable insights. These
concepts and topics are in high demand in domains such as data science, data analysis, knowledge
discovery (KD), artificial intelligence (AI), and machine learning (ML).

To that end, we will cover the following topics in this chapter:

•	 Data mining

•	 Handling collected data

•	 Data analysis and visualization

Data Mining, Analysis, and Visualization222

Technical requirements
A web browser (Google Chrome or Mozilla Firefox) will be required, and we will be using JupyterLab
for Python code.

Please refer to the Setting things up and Creating a virtual environment sections of Chapter 2 to continue
with setting up and using the environment we have created. Refer to the following links to install and
upgrade the required libraries:

•	 pandas : https://pandas.pydata.org/docs/getting_started/install.
html

•	 ydata_profiling : https://ydata-profiling.ydata.ai/docs/master/
pages/getting_started/installation.html

•	 plotly : https://plotly.com/

•	 wordcloud : https://pypi.org/project/wordcloud/

The Python libraries that are required for this chapter are as follows:

•	 csv

•	 json

•	 sqlite3

The code files for this chapter are available online in the book’s GitHub repository: https://
github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-
Edition/tree/main/Chapter10.

Introduction to data mining
The term “mining” normally means the extraction or the process of extracting something. Data mining
is the process of extracting data or discovering information from data. Data mining is a growing and
ever-developing concept that discovers hidden, unexpected, and other various forms of information
from datasets or databases, which helps in KD and decision-making.

In terms of data, mining is used as a form of analysis to discover patterns, hidden facts, and more.
When knowledge is discovered using mining techniques, this is known as knowledge discovery in
databases (KDD or knowledge discovery and data mining). There are plenty of terms used to describe
data mining, such as KDD, information harvesting, pattern discovery from databases, and many more;
although the final results are the same, these terms differ in the steps and processing architecture.

https://pandas.pydata.org/docs/getting_started/install.html
https://pandas.pydata.org/docs/getting_started/install.html
https://ydata-profiling.ydata.ai/docs/master/pages/getting_started/installation.html
https://ydata-profiling.ydata.ai/docs/master/pages/getting_started/installation.html
https://pypi.org/project/wordcloud/
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/tree/main/Chapter10
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/tree/main/Chapter10
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/tree/main/Chapter10

Introduction to data mining 223

Important note
KDD is an almost cyclical process that has data mining as one of its major components. Various
steps are used by KDD, such as data selection, cleaning, enrichment (preprocessing), coding
and transformation, data mining, and reporting (interpretation and evaluation). The output
from each step is processed as feedback or input for the next step until the required information
or knowledge is obtained.

Data analysis and data mining are subsets of data science and are often compared and treated as similar
processes. Data mining is based on scientific and mathematical methods, whereas data analysis is
done using analytical models and intelligence systems.

Data mining is also considered a part of the data analysis process, but mining is normally done on
structured data, whereas analysis can be done on structured, unstructured, and semi-structured data.
Similar to KD and data analysis, “data warehouse” is a term that we often encounter while discussing
data mining.

A data warehouse is central storage for data of various types, such as recent, historical, and subject-
oriented. Data in a data warehouse is used for decision support systems or queries. Hence, the availability
and meaningful retrieval of data from data warehouses for the mining process significantly affects
their usefulness. Although the use of data warehouses is common in data science, there is no exact or
strict relationship between data mining and data warehouses. However, in the implementation phases
related to mining, they prove to be valuable.

Important note
Query processing tools and data mining tools are also often used side by side. Data mining
does not replace queries or tools related to querying; rather, it tops up the possible add-ons.
In a normal scenario, using structured query language (SQL) is much harder than mining to
find hidden knowledge from databases. In general practice, if we know what we are looking
for, we will use SQL. Otherwise, we use data mining.

Globally, there is a growing demand for information in various types and forms from systems and
frameworks related to data mining. AI and ML are also largely used to facilitate the correct procedures,
algorithms, and time-based information extraction. Data mining used to largely process only text
content. Now, there are various types of content to be mined, such as images, audio, video, web
content, and social media.

Data mining is used to collect and discover new patterns and knowledge that describe data. We can
use this along with some intelligent automated systems to predict, discover, and analyze data patterns,
deal with large volumes of various types of data, and reduce the amount of time it takes to handle data.

Normally, the goal of data mining is to extract hidden and unidentified information and knowledge from
data. Tasks related to data mining are either predictive (prediction, analytics) or descriptive (description,
modeling). There is a large number of techniques in both predictive and descriptive processes. In this
section, we have chosen only a few techniques, which are important and in high demand.

Data Mining, Analysis, and Visualization224

Predictive data mining

Predictive data mining primarily predicts unknown or future values. It uses statistical analysis to
turn data into valuable information. Techniques that analyze data and predict output fall into this
category and are as follows:

•	 Classification: This is one of the most common mining techniques, and it classifies data into
various categories based on some predictor variables, or predictors. Classification divides
a dataset into subsets by applying algorithms. Classification generally classifies data into
predefined categories.

•	 Regression: This technique is used to predict, forecast, and analyze the relationships between
variables. Some variables might be dependent on others and are called dependent variables. This
technique helps in the analysis or prediction of dependent variable values when independent
variables change. Normally, various regression methods (such as linear and multi-linear)
establish a relationship or link between all types of variables.

•	 Prediction: This technique analyzes past events and predicts future values. It is used to predict
relationships between independent and dependent variables, and within these variables as well.
It uses past or raw information from other techniques, such as classification and clustering.

Descriptive data mining

Descriptive data mining finds interpretable or detectable patterns. Also, it is considered to be the
preliminary stage of data processing. It analyzes past data and uses some of the techniques listed here:

•	 Clustering: This technique groups items that are similar or possess similar characteristics. It
divides data into clusters with similar content. It also tries to make the clusters as different as
possible. Clustering and classification are similar, but they differ in that clustering finds and
stores data clusters based on the data’s characteristics and not based on predefined characteristics.

•	 Summarization: This technique provides a concise representation of a dataset, including
generating reports and visualization. Summarization stores a descriptive summary that is easy
to understand.

•	 Association rules: This technique associates a number of variables in datasets. Association rules
state a statistical correlation between certain attributes in a dataset. It helps with identifying
relations (or associations) between two or more variables, which can help with finding hidden
observations or patterns. This technique is commonly employed in market analysis.

Important note
Market analysis is a modeling technique used by retailers to find associations between items.
For example, if a customer is buying item A, what other items might be bought?

Handling collected data 225

Data mining is an important component in today’s organizations that uses analytics or similar
information for decision-making. Companies or organizations can predict and collect information
based on usage patterns of their clients or customers, classify them, and generate information that
will be helpful for management and can be used in research, to predict client or customer behavior,
to detect fraud, in business intelligence (BI), to form marketing strategies, in brand management,
for ML models, and much more.

There are also some steps in data mining that need to be taken seriously and consistently, to prevent
invalid or incorrect interpretations and outcomes. The quality (clean, preprocessed, filled, enriched,
duplicates removed) and volume (daily, per transaction, time series) of data drives the results.

In the next section, we will be exploring how data is collected, stored, and read, and how the various
file formats or databases are chosen.

Handling collected data
The availability of data is the main concern before attempting to process it for information and pattern
detection. Handling collected data normally refers to gathering data in files and databases in some
format and using it effectively and efficiently.

There are many tools and applications that handle data. Choosing the right tool or way of storing and
using data shows your professionalism as a developer.

In the following sections, you will be learning about concepts related to handling files and dealing
with types of files (JSON and CSV) that are in huge demand in the market and are associated with a
large number of IT-driven applications.

Basic file handling

File handling is the core or basic technique for storing and reading data from files. This technique
of handling and managing data is used a lot in various programming languages. File handling does
not require additional software or tools unless some application extensions are used. Formatting is a
major issue; we are pretty much dealing with the files’ contents in a very raw format.

In Python, as seen in the following code, an inbuilt function called open() is used to read in a
file, and the close() function removes the file from memory and is always used at the end of all
file-related activities, such as reading and writing. The open() method is provided with some optional
arguments, such as mode and encoding:

content = open(file_with_path, mode, encoding)
encoding is optional
try:
    …… #file reading writing seeking positions
finally:
    content.close()

Data Mining, Analysis, and Visualization226

The encoding argument is optional. By default, it uses the value utf-8. There are various modes
in which files can be managed or operated:

•	 r: Read mode; this reads the file. It is also the default mode if no other mode is provided with
open(). r+ reveals combined mode both for reading and writing and rb opens the file in
read mode and binary mode. The full filename or location of the file should be available if you
want to use this mode. There are methods for read mode such as the following:

	� read(): Reads the complete file content and returns a string, for example, variable =
content.read() or variable = content.read(200) # reads first
200 characters from content

	� readline(): Reads a single line from the content, for example, line_1 = content.
readline()

•	 w: Writes in the file. w+ is used for writing and reading, whereas wb is used to write binary
values. The write() method writes the provided argument to the file, for example, content.
write(string).

•	 a: Append mode is used to write content at the end of the loaded file. If the file is not found
or the wrong filename or file path is provided, then it creates a new file, for example, f =
open("file.txt", "a") and f.write("this will be added to last
line of file.txt")

rb+ and wb+ are often encountered with binary file format. There are also a few methods that work
on content inside the file:

•	 tell(): Returns the current position of the file object in the file, for example, content.
tell().

•	 seek(): Adds or changes the file object position to the provided offset value. Generally,
seek(offset, whence) accepts two of the offset, whence, or from arguments.

For example, content.seek(199) points to the two-hundredth character in the file and content.
seek (100,199) points to the one-hundredth character after the first 200 characters.

Python also supports a statement called with, which is used for managing resources such as files
and database connections. The with statement is also used for making cleaner, more readable code,
and it also helps with exception handling. There’s no need to use methods such as close() because
with handles the code scope automatically. Here’s an example:

with open(fileNamePath, "r+") as file:

content = file.read()
…..

As shown in the preceding code template, with is used to open the file referenced with fileNamePath
using r+ mode. After loading the file, the file’s contents are read using the read() function.

Handling collected data 227

In this section, we have covered some important techniques and methods that are used for file handling.

In the next sections, we will explore some structured types of files and look at how to read and write
to them.

JSON

JavaScript object notation (JSON) is a structured file format. From web APIs to local file content, the
utilization of JSON is on the rise due to its string-based features and resemblance to Python. JSON
contents are made from a mixture of dict() and list(). Python’s built-in json library can be used to
manage JSON files. There are various ways to read files; we can use Python file-handling techniques,
as shown in the following code:

import json
with open("book_details.json", "r") as file:
    books = json.loads(file.read())
    print(books[0]['Title'])
    Birdsong: A Story in Pictures

    print(books[0])
    {'Upc': '9528d0948525bf5f', 'Title': 'Birdsong: A Story
    in Pictures', 'Price': '£54.64',
    'Rating':'http://books.toscrape.com/media/cache/af/6e/
    af6e2.jpg'}

The json method loads content using the loads() method and the content is returned by the
file object using the read() method. Once the JSON content is loaded, it can be accessed and
used as a Python dictionary by using keys and indexes.

In the following sections, we’ll be dealing with basic read and write activities with JSON files.

Reading JSON files

Today’s web content is more and more JSON-driven, and JSON has been an effective part of storing
and analyzing data. The pandas Python library is used to analyze data, and it also provides a method
called read_json() for reading JSON files. It converts JSON content into DataFrame format
with a row and column (almost tabular) structure. There is also an attribute named shape, which
returns the shape (rows, columns) of the DataFrame, as shown in the following code block:

import pandas as pd
bookJson = pd.read_json("book_details.json")
print(type(bookJson))
pandas.core.frame.DataFrame
print(bookJson.shape)
(29,8)

Data Mining, Analysis, and Visualization228

After obtaining a DataFrame, we can read columns by chaining columns with a period, such as
bookJson.Title. Indexes can also be provided to a DataFrame using iloc from pandas;
for example, bookJson.iloc[2] will return data from the third index in the DataFrame, as
shown here:

bookJson.Title
0    Birdsong: A Story in Pictures
………
28   Charlie and the Chocolate Factory (Charlie Buc...
Name: Title, dtype: object

bookJson.iloc[2]             # read index 3
Upc                          b5ea0b5dabed25a8
Title                  The Secret of Dreadwillow Carse
Price                  £56.13
Rating                 One
Stock                  In stock
Stock_Qty              16
Url       http://books.toscrape.com/catalogue/the-secret...
Image     http://books.toscrape.com/media/cache/c4/a2/c4...
Name: 2, dtype: object

In this section, we used pandas methods to read and load JSON file contents. In the next section, we
will be using the native Python library json to create JSON files.

Writing JSON files

There’s another method provided by pandas for creating JSON files, to_json(). We will be using
the json library and its dump() method to create a JSON file. As shown in the following code, we
have an empty list that gets loaded with two sample dictionaries. The demo.json file is opened using
write (w) mode, and a dataSet list with values passed to json.dump(). The dump() method
converts a Python object into a JSON string and provides the object to the file:

dataSet = []
dataSet.append({'hotel':'Hotel1','reviews':{'country':'UK',
    'reviewcount':21,'rating':9.9, 'positive':9,
        'negative':0, 'stayDate':'2022-12-26'}})
dataSet.append({'hotel':'Hotel2','reviews':{'country':'US',
    'reviewcount':11,'rating':7.9, 'positive':8,
        'negative':0,'stayDate':'2023-01-02'}})

import json
with open("demo.json", "w") as file:
    json.dump(dataSet, file, indent=4, sort_keys=False)

Handling collected data 229

Two dictionary or dict() objects are appended to the dataSet collection, which are then written
to the demo.json file.

The output of the demo.json file is shown in Figure 10.1:

Figure 10.1: JSON output (Jupyter notebook)

As we have seen in this section, the easiest and most effective way of reading and creating files is by
using the JSON file format. In the next section, we will deal with CSV files.

CSV

Comma-separated values (CSV) is another format of structured data. CSV files are somewhat
compact and voluminous in nature. Each entity in a file is either a column or row record, and they
are separated by a delimiter, generally a comma (,). We can have different delimiters or separators,
but need to be careful when reading and processing such files.

Converting CSV files into tables is common in practice. CSV stores data in row and column format,
almost in a tabular structure. CSV headers, or the first row, contain the titles of the columns. From
the second row, data is listed line by line. Python provides a built-in library, csv, that has certain
methods that make writing CSV files almost like basic file handling.

Data Mining, Analysis, and Visualization230

As shown in the following code, the with statement is provided with w+, encoding, and
newline arguments:

import csv
def writeto_csv(data, filename, columns):
    with open(filename, 'w+', newline="", encoding="UTF-8")
    as file:
        writer = csv.DictWriter(file, fieldnames=columns)
        # Column header

        writer.writeheader()              # writes header
        writer = csv.writer(file)
        for element in data:
            writer.writerows([element])
            # writes each list element as row

There is a class called DictWriter in the csv library that has a few dedicated methods for writing
CSV headers (writeheader()) and rows (writerows()). Throughout this book, we are using
the writeto_csv() function, which receives the three arguments listed here:

•	 data: A list of elements that will be added as CSV rows

•	 filename: The filename that will be created

•	 columns: A list of the column names or headers for the CSV file

With some sample data provided in the following holidays list, a call to the defined writeto_
csv() function has been made, which will create a file called holidays.csv with Date and
Name columns, and rows from the holidays list:

holidays = [['2023-01-02', "New Year's Day"],
['2023-01-16', 'Martin Luther King, Jr. Day'], ………,
['2023-11-10', 'Veterans Day'], ['2023-11-23',
'Thanksgiving Day'], ['2023-12-25', 'Christmas Day']]

writeto_csv(holidays, 'holidays.csv', ['Date', 'Name'])
function call

The raw holidays.csv file looks as shown in Figure 10.2:

Handling collected data 231

Figure 10.2: CSV file without formatting

Using editors such as Jupyter Notebook, holidays.csv will look as shown in Figure 10.3:

Figure 10.3: CSV file with formatting

The pandas library provides methods for reading and writing DataFrames to CSV files. The books.
csv file is being read into a DataFrame using pandas’ read_csv() function. There are more than
four columns in the books.csv file, as shown here:

category, image, no_review, price, rating, stock, title, upc, url

Data Mining, Analysis, and Visualization232

But we are reading only four selected columns with the help of the usecols argument (in many
situations, memory overload can be controlled or managed by using required values only):

import pandas as pd
books = pd.read_csv("books.csv", usecols = ["category",
    "price", "rating", "title"])
type(books)    # pandas.core.frame.DataFrame
books.shape    # (1000, 4)

As shown in Figure 10.4, the books DataFrame with four columns and 1,000 rows is being displayed:

Figure 10.4: DataFrame with selected columns from CSV

pandas also supports writing DataFrames to CSV files using to_csv(). For example, books.
to_csv('books_4_col.csv') will create a CSV file with data from the books DataFrame.

Important note
pandas supports reading and creating various file types, such as JSON, CSV, XLSX (Excel),
HTML, XML, Parquet, and ORC. Please refer to https://pandas.pydata.org/docs/
reference/io.html for more details.

In the next section, we will discuss the lightweight database SQLite.

https://pandas.pydata.org/docs/reference/io.html
https://pandas.pydata.org/docs/reference/io.html

Handling collected data 233

SQLite

Databases store data in the form of tables, or in a row and column structure. Data collected from
various tables can be used, linked, and queried using the features of relational database management
systems (RDBMSs). We can manage data inside databases using structured query language (SQL)
or by embedding or using programming languages. When there are security concerns and SQL is
required, databases with tables are generally preferred to file handling.

SQLite is one of the most commonly used database engines with Python, https://docs.python.
org/3/library/sqlite3.html. It is considered fast and easy to handle and can be used with
or without applications. It creates a file with the .db extension in a given location, and can also access
or read the database file as required.

sqlite3 is a standard Python library. SQLite supports column types such as integer, float,
and text. For example, take a look at the following code block:

import sqlite3 as db
connection = db.connect('sample.db')
connection.execute('create table holiday(ID int,
    Title text, Date text)')

Some of the main details of the preceding code are as follows:

•	 The connect() method connects the database with the code file and manages disk activities.

•	 Every process in SQLite should begin by establishing the connection with the database using
connect(). The connection object of the sqlite3.Connection class is used to
deal with database activities.

•	 connection.execute() creates an sqlite3.Cursor object, which is used to process
SQL queries. cursor objects are used to execute SQL statements and deal with rows of data
inside tables.

As per the preceding code block, the sample.db file will be created in the stated location, and it
contains a table named holiday, created using a SQL statement. For more information on SQL,
please visit https://www.sqltutorial.org.

The commit() method is used as a saving option. A call to commit() secures the availability or
execution of the SQL statement in the database:

connection.execute('insert into holiday(ID, Title, Date) values
(1,"New Year Day", "2023-01-01")')
……
connection.commit()

https://www.sqltutorial.org

Data Mining, Analysis, and Visualization234

After inserting rows into the table, results can be obtained using SQL queries. Also, methods such
as fetchone() and fetchall() can be used to retrieve single rows and all rows respectively:

results = connection.execute('select * from holiday')
for row in results:
    print(row)
    (1, 'New Year Day', '2023-01-01') (2,……….
result = cursor.execute('select * from holiday')
result.fetchone()  # (1, 'New Year Day', '2023-01-01')

Converting a sqlite3 table into a CSV file is simple using pandas. pandas provides a method called
read_sql() that accepts a SQL query that can be used with the sqlite3 connection object,
dbConnect. The to_csv() method from pandas is used to create a CSV file. The index argument
can also be removed while creating a file:

dbConnect = db.connect('sample.db')
holidayData = pd.read_sql('select * from holiday'
    ,dbConnect)

holidayData.to_csv('holiday_sqlite.csv')
holidayData.to_csv('holiday_sqlite_noindex.csv',
    index=False)

SQLite is also used professionally for learning and practicing DBMS and RDBMS concepts. It can also
be used to build the confidence of practitioners to handle DBMSs such as MySQL and MongoDB.

Important note
Although there’s no in-built security provided with SQLite, encrypted data can also be stored
in tables. This somewhat prevents access-level security vulnerability. Please visit these links for
more details on Python database related libraries: https://www.sqlite.org/index.
html (sqlite3), https://pymongo.readthedocs.io/en/stable/ (pymongo),
and https://pymysql.readthedocs.io (pymysql).

In the next section, we will be exploring analysis and visualization using the pandas and plotly
Python libraries.

Data analysis and visualization
Python programming is popular because of its easy usage and the availability of libraries for scientific
computing, text computation, data analysis, machine learning, and much more. Data analysis is a
systematic process. Unknown facts, hidden patterns, summary data, and a lot of other information

https://www.sqlite.org/index.html
https://www.sqlite.org/index.html
https://pymongo.readthedocs.io/en/stable/
https://pymysql.readthedocs.io

Data analysis and visualization 235

can be obtained using data analysis. Data analysis is also treated as a subset of data science, and it has
been booming with the use of Python and its features.

In this section, we will be analyzing some datasets, exploring some of the important features of pandas,
and visualizing the results using plotly.

Analyzing data generally involves a few basic steps:

1.	 Identify: Identify the source of data or the origin of data, such as a website, PDF file, or image.

2.	 Collect: Collect the identified data using scraping or other techniques. Storing data is also
important here.

3.	 Clean: Preprocess and clean the collected data. Clean data is easier to process with statistical
tools and is more likely to return accurate results.

4.	 Analyze: Clean and collected data is processed with logical techniques, statistics, and qualitative
and quantitative approaches. Obtained results are collected, stored, and visualized.

5.	 Interpret: Visualized results are interpreted and a summary of the information is explored.

There are various ways to analyze data. We will be using a reporting tool to explore the data we have
in the next section.

Exploratory Data Analysis using ydata_profiling

Exploratory Data Analysis (EDA) is a compulsory activity that has to be carried out on data that will
be used for analysis. Performing and studying EDA reports can provide more information about the
data, and can also provide a small amount of analyzed information. For simple datasets with clean,
high-quality data, it might not be necessary to conduct further analysis by writing code, after doing EDA.

In Python, EDA steps and processes used to involve writing code using various Python analysis
libraries and graphing tools. There has been a lot of development in EDA; we now have a Python
library called ydata_profiling that automatically creates a report based on the dataset provided.
ydata_profiling is easy to use and helps with generating reports (HTML, embedded notebooks,
and more) with just a few lines of code. Some of the benefits of using these EDA libraries are listed here:

•	 Only a few lines of code need to be used

•	 Ready-to-use generated reports

•	 Provides detailed statistics on variables (count, duplicate, missing, types, distinct,
correlation with other variables, and many more)

•	 Provides filterable graphs for correlations, interactions, missing values, and more

Data Mining, Analysis, and Visualization236

As seen in the following code, the book_details.json dataset is being loaded to a pandas
DataFrame using read_json(). The ProfileReport class of ydata_profiling accepts
the books DataFrame and creates a report with the provided title attribute.

Here, the report generated has been exported to an HTML file named book_details_rawdata.
html:

import pandas as pd
from ydata_profiling import ProfileReport
books = pd.read_json("book_details.json")# input
books_profile = ProfileReport(books,
    title="Book Details - Raw Data , Report")

books_profile.to_file("book_details_rawdata.html")# output

The generated book_details_rawdata.html file will have various menu options, as shown in
Figure 10.5. This report file can also be opened in a new browser tab:

Figure 10.5: EDA – HTML report

Moving through the report menus, we can also find detailed statistical descriptions for data variables,
as shown in Figure 10.6. Depending on the type (numerical, categorical, and others) of the variable,
detailed analysis reports will vary.

Data analysis and visualization 237

Figure 10.6: Statistical description in an EDA report

As mentioned in the introduction to this section, the cleanliness and accuracy of the analysis are based
on the data we are using. For this chapter, book data scraped from http://books.toscrape.
com/ has been used. Two EDA reports have been made and are available in this chapter’s GitHub
repository: one uses the raw dataset, and another uses a cleaned data file.

Important note
ydata_profiling is an updated version of the existing pandas_profiling library.
As mentioned in https://pypi.org/project/pandas-profiling/, pandas_
profiling will be outdated soon. There is also another library named dataprep from
https://dataprep.ai/. dataprep provides more customizable and granular reports
than pandas_profiling.

Despite their ease of use and the lack of long code, output in EDA reports is limited and might not be
suitable for in-depth analysis of data variables. In such cases, coding and performing manual analysis
is compulsory, which we will be doing in the next section.

pandas and plotly

pandas is one of the most widely used data analysis libraries. Performance, data structure (series,
DataFrames), ease of use, convertibility, input-output compatibility, availability of features, and
many other things keep pandas at the top of its category. For detailed information on pandas, please
visit https://pandas.pydata.org/.

plotly, on the other hand, is a graphing library (https://plotly.com/python/). It contains
some advanced imaging features such as downloading images in .png format, zooming in and out,
auto-scaling, pan clicking and dragging, resetting axes, and more. These plotly features are available
in the top right-hand corner of visualizations without using code, as shown in Figure 10.7:

http://books.toscrape.com/
http://books.toscrape.com/
https://pypi.org/project/pandas-profiling/
https://dataprep.ai/
https://pandas.pydata.org/
https://plotly.com/python/

Data Mining, Analysis, and Visualization238

Figure 10.7: Plotly image options

pandas can be used with various graphing libraries, such as matplotlib and seaborn. The plot()
method from pandas can be used directly on top of data. pandas also provides options to choose
graphing libraries and apply them as required in code or notebooks. For example, pd.options.
plotting.backend = "plotly" sets pandas’ plotting library to plotly:

import pandas as pd
import numpy as np
import plotly.express as px
pd.options.plotting.backend = "plotly"

Since Jupyter notebooks are used in code examples, we will find the preceding code at the top of the
notebook. This code can also be called or imported in the required places.

Let’s explore some basic usage of pandas and analyze data through some examples.

Example 1 – book analysis

The code for this example is available at data_analysis_book.ipynb.

The read_json() method reads the JSON file and creates a DataFrame called books. The shape
attribute returns a tuple object where the first value is the number of rows and the last value is the
number of columns. describe() displays statistical details about the numerical columns. The
include="all" argument in describe() provides the statistical detail of all available columns
or those returned from books.columns:

books = pd.read_json("book_details.json")
books.shape         # (29, 8)
books.describe()
books.describe(include="all")
books.info

books.columns
Index(['Upc', 'Title', 'Price', 'Rating', 'Stock', 'Stock_Qty', 'Url',
'Image'], dtype='object')

Column names can be used as attributes, such as books.Title, or in indexed format, such as
books['Title']. Python supports indexing in [START: STOP: STEP] syntax. In books.
Title[::3], every third book title is provided:

books.Title[::3]   # no start an stop, only step
0       Birdsong: A Story in Pictures

Data analysis and visualization 239

3       The White Cat and the Monk: A Retelling of the...
…….
24                                       Counting Thyme
27                                       Matilda
Name: Title, dtype: object

There are various methods and attributes in pandas for accessing row data. The most common one
is index and location, or iloc[]:

books.iloc[2]            # returns row from index 3 (0,1,2)
Upc  b5ea0b5dabed25a8
Title                       The Secret of Dreadwillow Carse
………
Url       http://books.toscrape.com/catalogue/the-secret...
Image     http://books.toscrape.com/media/cache/c4/a2/c4...
Name: 2, dtype: object

Checking unique values and counting the total number of unique values is quite applicable during
analysis. Here, books has 29 rows, but there are only 5 unique values (nuinque() returns the
number of unique elements). This suggests that duplicate values exist in the Rating column. Rating
values are strings, which might cause problems if any statistical computation is required. Therefore,
cleaning is required for the Rating column:

books["Rating"].unique()
array(['Three','One','Four','Five', 'Two'], dtype=object)
books["Rating"].nunique() # 5

One of the important aspects of using pandas is data filtering. Various methods can be used for filtering,
such as filter(), where(), and query(). Also, as shown in the preceding code, logical operations
(such as and and or) can be used for filtering. [['Title', 'Price', 'Stock_Qty']],
after the query() operation, collects and displays results from only the three columns mentioned:

books.query("Stock_Qty >= 15 and Title.str.contains('Bear')")
[['Title', 'Price', 'Stock_Qty']]

Similar to the str.contains() method, there are also startswith() and endswith()
methods. These methods play crucial roles when dealing with string types, and again when filtering
techniques are applied.

As shown in the preceding code, the value_counts() method counts the total number of
occurrences of the provided value for the selected columns:

ratingCount = books["Rating"].value_counts()

Data Mining, Analysis, and Visualization240

The ratingCount variable contains the counts related to book rating and plots the bar chart, as
shown in the following code:

ratingCount.plot.bar(title="Rating Count", labels=dict(index="Rating",
value="Count", variable="Detail"))

plotly support various types of chart, such as bar, line, barh, and pie.

Figure 10.8: Using a plotly bar chart

The following code plots a default plot, which is a line chart, with the labels provided:

ratingCount.plot(title="Rating Count", template="simple_white",
labels=dict(index="Rating", value="Rating_Count", variable="Legends"))

If no type is mentioned, plotly will draw a line chart, as shown in Figure 10.9:

Figure 10.9: Line chart (ratingCount)

Data analysis and visualization 241

The pandas copy() method creates a duplicate DataFrame. Duplication is necessary in this case
because we are going to clean some column values. The inplace=True argument is quite sensitive
because it makes changes to the bookDF DataFrame:

bookDF = books.copy()  # Duplicating a DataFrame
bookDF["Rating"].replace(["One","Two","Three","Four",
    "Five"],[1,2,3,4,5],inplace=True)

bookDF["Price"] = bookDF["Price"].str.replace("£","")
bookDF["Price"] = bookDF.Price.astype(float)

bookDF is clean and now has Price, which is a float, and Rating, which is an integer. The
groupby() method groups or combines the Price values for each Rating and sums the Price
values using np.sum:

price_groupby=bookDF.groupby("Rating")["Price"].agg(np.sum)
price_groupby.plot.bar()

The result of the preceding code has been plotted as a bar chart, as shown in Figure 10.10:

Figure 10.10: Aggregated price for each rating

As shown in Figure 10.10, we can determine the following based on the Rating number (from client
feedback) values:

•	 Books with Rating values of 3 and 1 are the top two sellers

•	 Books with a Rating value of 5 are the lowest sellers

Data Mining, Analysis, and Visualization242

Finally, the DataFrame with clean data, bookDF, was written to a new CSV file using to_csv().
In addition, EDA was conducted using the book_details_clean.csv file:

bookDF.to_csv('book_details_clean.csv', index=False)

Important note
EDA HTML report files with both uncleaned and cleaned data are available as reports. It is
recommended to view both reports and see the difference in details they carry.

The contents of the book_details_clean.csv file were cleaned and processed and then used
in the code. In the next example, we will do some more exploration of charts and pandas activities.

Example 2 – quote analysis

The code for this example is available at data_analysis_quote.ipynb.

In Example 1 – book analysis, a DataFrame was created by reading a JSON file. In this case, we have
data in a CSV file, which is read using read_csv(). The usecols argument can be assigned to
choose columns that are to be placed in the new DataFrame:

quotes = pd.read_csv("quote_details.csv",
usecols=["author","quote","tags", "tag_count"])

Tags are separated by commas (,). tag_count counts the words inside tags.

The following code, with the condition that tag_count is greater than one, resulted in a new
DataFrame, newQuoteDF. Only two columns, tags and author, are selected:

newQuoteDF = quotes[quotes["tag_count"]>1][['tags', 'author']]
newQuoteDF

The new DataFrame, newQuoteDF, and the selected two columns (tags and author) can be
seen in Figure 10.11:

Figure 10.11: Sample newQuoteDF with tag_count > 1

Data analysis and visualization 243

For proper analysis, we need to take each word from tags and link them with the author. For example,
the change,deep-thoughts,thinking,world -- Albert Einstein row needs to
be changed to ['change', 'Albert Einstein'], ['deep-thoughts', 'Albert
Einstein'], ['thinking', 'Albert Einstein'], ['world', 'Albert
Einstein']. To achieve this, row-wise iteration is required, which is used to split the tags and also
create a new DataFrame, tagsDF. The chart with the values obtained from the value_counts()
method plotted on Tag of DataFrame tagsDF is shown in Figure 10.12:

tmpData = []
for index, row in newQuoteDF.iterrows(): # tags, author
    tagList = row.tags.split(",")
    for tag in tagList:
        tmpData.append([tag, row.author])

tagsDF = pd.DataFrame(tmpData, columns=['Tag', 'Author'])
tagsDF.Tag.value_counts().plot()

As shown in Figure 10.12, the tags with the text life and love seem to be high in count:

Figure 10.12: Count of tags

As shown in the following query, there are a total of 11 tags that start with the l character:

tagsDF.query("Tag.str.startswith('l')")['Tag'].nunique()   # 11

Data Mining, Analysis, and Visualization244

As shown in Figure 10.13, it also looks like there are many tags that have a length that is less than or
equal to 10 – almost 80% of the total tag count:

Figure 10.13: Count of tag lengths

In Figure 10.14, using the describe() method, we can see that out of 196 total rows, there are
120 unique tags, and there are quotes by 38 authors. The highest-frequency tag is life with 12
occurrences. Similarly, Albert Einstein is the highest-frequency author with 22 occurrences:

Figure 10.14: Statistical detail for tagsDF

The information shown in Figure 10.14 can also be found using value_counts():

authorCount = tagsDF.Author.value_counts(ascending=True)
authorCount.plot.area()

Author.value_counts() in tagsDF is plotted in Figure 10.15. The results are placed in
ascending order, hence the steep gradient in this figure:

Data analysis and visualization 245

Figure 10.15: Area plot

The following code executes a filter action on authorDF1.Count (occurrence frequency) to be
displayed in a pie chart:

fig1 = px.pie(authorDF1[authorDF1.Count>5], values='Count',
names="Author", title='Author with count >5')
fig1.show()

Figure 10.16 conveys similar information as Figure 10.15, but using a pie chart. Out of 38 authors,
those with more than 5 occurrences are mentioned, and Albert Einstein makes up 16.8% of the chart:

Figure 10.16: Pie chart of authors

Data Mining, Analysis, and Visualization246

In the preceding example, we were able to find mathematical information for the most occurring
texts. Handling raw data in pandas and moving it to a new DataFrame for analysis was also one of
the objectives.

Also, when you want to visualize string data, wordcloud is a useful library. In the following code,
the WordCloud class from the Python wordcloud library is imported:

from wordcloud import WordCloud   # accepts string

The WordCloud class, with few properties, such as max_words and background_color, is
initiated and provided with content of the Tag column from tagsDF, which results in the screenshot
shown in Figure 10.17:

Figure 10.17: WordCloud generated using tags

Conducting EDA, cleaning data, storing data in files and DataFrames, analyzing datasets, creating
visualizations, and generating meaningful or hidden patterns and information were the main takeaways
from this section. There is more to explore using pandas; please visit https://pandas.pydata.
org/ for more details.

Summary
Generating and gathering information using different analysis techniques and using it for decision-
making is a growing field. Fields such as business intelligence (BI), AI, and ML require, and use,
various data analysis techniques. Python programming provides a great infrastructure for the
processes of data collection, data processing, information abstraction, and knowledge discovery.
Libraries such as pandas, NumPy, csv, json, and plotly are the core Python libraries of the
overall systematic process.

https://pandas.pydata.org/
https://pandas.pydata.org/

Further reading 247

A practical introduction to the concepts related to data mining, data analysis, EDA, and data visualization
was the main agenda of this chapter.

In the next chapter, we will be learning about machine learning and web scraping.

Further reading
•	 Data Mining:

	� https://www.ibm.com/topics/data-mining

	� https://www.springboard.com/blog/data-science/data-mining-
python-tutorial/

	� https://www.investopedia.com/terms/d/datamining.asp

•	 Data Analysis:

	� https://monkeylearn.com/data-analysis/

	� https://www.datapine.com/blog/data-analysis-methods-and-
techniques/

	� https://www.investopedia.com/terms/d/data-analytics.asp

•	 Exploratory Data Analysis:

	� https://ydata-profiling.ydata.ai/docs/master/index.html

	� https://www.digitalocean.com/community/tutorials/exploratory-
data-analysis-python

	� https://www.kaggle.com/code/imoore/intro-to-exploratory-data-
analysis-eda-in-python

•	 Visualization:

	� https://plotly.com/python/

	� https://www.ibm.com/topics/data-visualization

	� https://matplotlib.org/stable/tutorials/introductory/pyplot.
html

	� https://gilberttanner.com/blog/introduction-to-data-
visualization-inpython/

https://www.springboard.com/blog/data-science/data-mining-python-tutorial/
https://www.springboard.com/blog/data-science/data-mining-python-tutorial/
https://www.investopedia.com/terms/d/datamining.asp
https://www.investopedia.com/terms/d/data-analytics.asp
https://www.kaggle.com/code/imoore/intro-to-exploratory-data-analysis-eda-in-python
https://www.kaggle.com/code/imoore/intro-to-exploratory-data-analysis-eda-in-python
https://gilberttanner.com/blog/introduction-to-data-visualization-inpython/
https://gilberttanner.com/blog/introduction-to-data-visualization-inpython/

11
Machine Learning and

Web Scraping

So far, we have learned about data extraction, data storage, and acquiring and analyzing information
from data by using a number of Python libraries. This chapter will provide you with introductory
information on Machine Learning (ML) with a few examples.

Web scraping involves studying a website, identifying collectible data elements, and planning and
processing a script to extract and collect data in datasets or files. This collected data will be cleaned
and processed further to generate information or valuable insights. ML is a branch of Artificial
Intelligence (AI) and generally deals with statistical and mathematical processes. ML is used to
develop, train, and evaluate algorithms that can be automated, keep learning from the outputs, and
minimize human intervention.

ML uses data to learn, predict, classify, and test situations, and for many other functions. Data is
collected using web scraping techniques, so there is a correlation between ML (its performance)
and scraped data. Web scraping is primarily linked with ML because quality data is provided to ML
algorithms as input. ML is also considered for use for any tasks that require lots of interpretation,
iterations, handling large volumes of data (in GB, TB, or PB), complex datasets, and any tasks that
ML can reduce the processing time of, and reduce errors, when compared to humans.

In this chapter, we will learn about the following topics:

•	 Introduction to ML

•	 ML using scikit-learn

•	 Sentiment analysis

Technical requirements
A web browser (Google Chrome or Mozilla Firefox) will be required and we will be using JupyterLab
for Python code.

Machine Learning and Web Scraping250

Please refer to the Setting things up and Creating a virtual environment sections of Chapter 2 to continue
with setting up and using the environment created.

The Python libraries that are required for this chapter are as follows:

•	 scikit-learn (visit https://scikit-learn.org/stable/install.html for installation)

•	 textblob (visit https://textblob.readthedocs.io/en/dev/install.
html for installation)

•	 vaderSentiment

•	 plotly

•	 numpy

•	 pandas

•	 matplotlib

The code files for this chapter are available online in this book’s GitHub repository: https://
github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-
Edition/tree/main/Chapter11.

Introduction to ML
Data collection, analysis, and the mining of data to extract information are major agendas of many
data-related systems. Processing, analyzing, and executing mining-related functions requires processing
time, evaluation, and interpretation to reach the desired state. Using ML, systems can be trained on
relevant or sample data and ML can be further used to evaluate and interpret other data or datasets
for the final output.

ML-based processing is implemented similarly to and can be compared to data mining and predictive
modeling, for example, classifying emails in an inbox as spam and not spam. Spam detection is a kind
of decision-making to classify emails according to their content. A system or spam-detecting algorithm
is trained on inputs or datasets and can distinguish emails as spam or not.

ML predictions and decision-making models are dependent on data. ML models can be built on top of,
and also use, several algorithms, which allows the system to provide the nearest possible predictions and
accurate results. Models trained on a specific dataset can also be applied to new datasets, incorporating
the new data and learning from additional collected data or real-time data obtained from scrapers or
crawlers. There are ML systems that have theses abilities and assist applications in achieving desirable
outputs, such as those listed here:

•	 Stock price prediction

•	 Classifying movies

https://scikit-learn.org/stable/install.html
https://textblob.readthedocs.io/en/dev/install.html
https://textblob.readthedocs.io/en/dev/install.html
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/tree/main/Chapter11
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/tree/main/Chapter11
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/tree/main/Chapter11

Introduction to ML 251

•	 Sentiment analysis (Natural Language Processing (NLP))

•	 Disease prediction

•	 Weather forecasting

•	 Customer support and translations

•	 Recommendation tools

•	 Fraud detection systems and cybersecurity

•	 Text to speech

•	 Image recognition

•	 Machine or self-driving vehicles

•	 Scheduled analysis and reporting

ML applicability is boundless; it can be used in the fields of research and study, health and medicine,
business and marketing, and more. There are some common challenges in ML (from a data perspective):

•	 Quality of data

•	 Unbiased data

•	 Limited availability of data

ML models are trained on data. Raw data, most of the time, is unstructured, incomplete, and may also
contain some flaws. The following sections will provide basic information on ML.

In the next section, Python libraries that are quite often used in mathematical and ML-related scopes
are introduced.

ML and Python programming

Python is also known as a programming language for scientific computing. The popularity of Python,
its tools, and available libraries with proper documentation, along with its usability, maintainability,
and versatility, make Python the number one choice for ML and AI-related development.

In the upcoming sections, we will be introducing a few popular Python libraries. With a view to
showing how Python is used in fields such as ML and AI, the upcoming sections mention important
libraries that are very useful for starting an ML and AI journey using Python programming.

In the next section, we will identify certain types of data, as the type of data inputted ML algorithms
is important to consider.

Machine Learning and Web Scraping252

Types of data

Data is a raw material that can be used to generate desirable output. Data can also be categorized.
ML algorithms are also classified according to the types of data that are available in certain formats
to them as input. There are not just basic data types such as numbers (integer, decimal, or complex)
but also Booleans, strings, and more.

It’s often the case as we progress through ML projects that we encounter the topic of data processing
and data preprocessing. This aspect of data in ML is about preparing, cleaning, and organizing
datasets, and even converting datasets into a certain format that is easily identifiable and ready to
progress with building and training ML models. The process ensures the accuracy of the input and
cuts down on the time that might have been consumed unnecessarily. In Chapter 10, similar topics
were introduced with examples.

Here, we are talking about data categories – though most AI and ML libraries and frameworks accept
various types of data, providing them with the main type or the required type will enhance and ensure
the desired outcome. Listed here are a few types of data:

•	 Quantitative: Data that has numerical values – numbers that can be counted and measured.
It plays an important role in statistical and data analysis projects’ objective outcomes. Graphs
such as scatter plots and line graphs are mostly used for visualization. Quantitative data can
be of the following types:

	� Discrete: Includes countable whole numbers or concrete numbers. For example, the total
number of players in a squad, female students in a class, or children in a house.

	� Continuous: Data might be complex, varying in nature over time, or infinite, and can be
measured not counted. For example, height and weight, banks’ interest rates, shoe size, or
the temperature of the body.

•	 Qualitative: Categories or groups of data that cannot be expressed in a numerical format. It is
used most of the time for subjective outcomes, as this type of data expresses the qualities and
characteristics of the data. Graphs such as bar charts, horizontal bar charts, and pie charts are
mostly used to visualize such data. Qualitative data can be of the following types:

	� Structured: This data can be numbers but is not applicable to mathematical operations:

	� Nominal: Values in the form of labels where no order or ranking exists, for example,
gender, religion, or country

	� Binary: Only two options are available, for example, yes or no, true or false, pass or fail,
or good or bad

	� Ordinal: Countable but not measurable, with some associated order, for example, blood
group, academic grades, ranking, or movie ratings

	� Unstructured: There’s no proper format, for example, images or sounds

Introduction to ML 253

Qualitative data collected from interviews and surveys is mostly unstructured, descriptive, and
subjective in nature, which requires lots of interaction and interpretation. It is also difficult to collect
(scrape) and store. Data lakes and non-relational Database Management Systems (DBMSs) are often
prescribed to store such data. Coding with qualitative data is a challenge as it requires many rounds
to process and understand the data.

On the other hand, quantitative data is mostly structured, easily accessible, and storable in data
warehouses and Relational Database Management Systems (RDBMSs). It is also easy to code,
search, and analyze.

Important note
From an analysis point of view, qualitative data is susceptible to many risk factors, if it is not
processed and prepared in the correct way. There are ML and analysis libraries in Python that
assist in converting and representing qualitative data as quantitative (using deductive coding,
inductive coding, and various analysis methods such as content analysis, thematic analysis,
grounded analysis, and text vectorization).

In the next section, we will list Python libraries with scientific and statistical significance.

Python for statistical and numerical computation

The development of ML-related algorithms and even models uses statistical and mathematical
concepts. Python provides various in-built, installable, and open source modules for mathematical
and statistical purposes.

Listed here are a few important libraries from a statistical and mathematical perspective:

•	 numpy: This Python library for numeric and scientific computation also deals with n-dimension
matrices, arrays, linear algebra, and more. Please visit https://www.numpy.org for
detailed information.

•	 statsmodel: A library for statistical computation, statistical modeling, testing hypotheses,
data exploration, estimations, and more. Please visit https://www.statsmodels.org
for detailed information.

•	 scipy: A Python library for scientific computation. scipy is used for statistics, linear algebra,
optimizing algorithms, n-dimension interpolations, and more. Please visit https://scipy.
org for detailed information.

The libraries that we just listed are quite large – ever-growing – with in-depth coverage of features and
functionalities in their respective profiles. There might also be some overlapping of certain common
features among the modules, but developers will find such overlapping and similarities between
libraries and will opt for the one that best suits their implementation.

https://www.numpy.org
https://www.statsmodels.org
https://scipy.org
https://scipy.org

Machine Learning and Web Scraping254

There are plenty of Python packages and projects that are built on top of certain important features
of existing libraries, such as numpy and scipy, and standard libraries, such as math, cmath,
random, and statistics. Please visit https://docs.python.org/3/library for
more information on Python standard libraries and https://pypi.org for more information
on third-party and open source libraries.

Important note
https://pypi.org (the Python Package Index) is a repository where we can find links
and often complete details about packages, including their home pages, bug fixes, and more.
Developers can also submit their projects to be released to global Python audiences and developers.

In the next section, we will learn about some of the Python libraries that are used specifically in
ML projects.

Python libraries for ML

In this section, we will explore a few libraries that are quite popular in Python programming, especially
in the field of ML and AI. It is clear and understood that statistics and mathematical procedures are
compulsory in ML. There are dozens of Python libraries and frameworks we can find dedicated to
ML. The number of such libraries is growing rapidly in terms of a few important aspects:

•	 Applicability to large volumes of data

•	 Able to handle different types of data

•	 Deployable and manageable in various systems and environments

•	 Adaptable with mining, analysis, visualization, multi-layer processing, and much more

It is very important that frameworks and libraries in the field of ML and AI are open to changes (studies
and environments). There are plenty of examples of ML-based implementations and scopes. Listed
here are a few selected Python modules that are making, and have made, a distinguished practical
impact in the field of ML and AI using Python programming:

•	 PyTorch: An open source deep learning library and ML framework based on the torch
library and used for both research and production. Fast execution, the capability to process very
large datasets, cloud-based accessibility and support, and better debugging capabilities than
competitors’ libraries make PyTorch more significant. It is also popular in the field of computer
vision and NLP. Please visit https://pytorch.org for more information.

•	 TensorFlow: A free, open source library from Google for AI and ML, it is mostly used for
deep neural networks. Its scalability, flexibility, processes related to the development, training,
and re-training of ML models, high-speed processing capabilities, ease of deployment, and
applicability on top of various platforms make TensorFlow one of the best among its competitors.
Please visit https://www.tensorflow.org for more details.

https://docs.python.org/3/library
https://pypi.org
https://pypi.org
https://pytorch.org
https://www.tensorflow.org

Introduction to ML 255

•	 scikit-learn or sklearn: One of the most popular, highly appreciated free ML libraries, built on
top of scipy, numpy, and matplotlib, sklearn is suitable for all categories of developers,
as it handles and facilitates various types of ML algorithms (supervised and unsupervised). It is
often recommended as a first choice for developers to learn about and get used to ML. Please
visit https://scikit-learn.org/stable/ for detailed information.

The ML frameworks and libraries we just listed are a few of the best. There are plenty of ML-related
libraries, such as SpaCy, Theano, Transformers, and Keras, that can be found on the internet. Some
such libraries are dedicated to particular ML- and AI-related issues, such as NLP (NLP is considered
a subset of ML, dedicated to text and languages), text analysis, computer vision, image classification,
and speech processing.

Though we have plenty of choices of libraries to use for ML, features such as data analysis, visualizations,
and Exploratory Data Analysis (EDA). Certain ML libraries use their in-built methods and attributes
for this, whereas a few work jointly with dedicated libraries, such as the following:

•	 pandas: For data input/output (I/O), analysis, and manipulation

•	 matplotlib: For visualizing dataset and model outcomes

•	 Libraries such as seaborn, plotly, and bokeh are also used for visualization purposes

Choosing libraries that are appropriate for the task is a challenge in itself. In this section, only some
of the common libraries were introduced. It’s a developer’s core duty and responsibility to analyze
scenarios, types of data, and volumes of data to work with and choose the appropriate libraries.

In the next section, we will learn about various types of ML algorithms.

Types of ML

ML is a growing and evolving field of AI and computer science. With statistical and computational
capabilities, on top of raw or sample data, ML libraries use plenty of algorithms to build a model and
to provide or assist us with information. Data mining techniques also use various ML algorithms to
discover patterns in data.

There are plenty of ML algorithms (learning algorithms), and they are categorized into three major
categories, as listed here, based on their training process:

•	 Supervised learning

•	 Unsupervised learning

•	 Reinforcement learning

In the next sections, we will be exploring each type of ML algorithm in some detail.

https://scikit-learn.org/stable/

Machine Learning and Web Scraping256

Supervised learning

In this type of learning, machines are provided with or trained using training data (labeled data), and
finally, they predict or classify the output based on the training data. The output is based on the input
data supplied and the algorithm learns from the training data. A quality dataset (clean, formatted,
preprocessed, and EDA conducted) must be available if we want the nearest possible output or
prediction. Here, the output variable is dependent on the input variable.

Listed here are a few steps explaining how the supervised learning technique works:

1.	 An input dataset, also known as a labeled dataset, is selected.

2.	 The dataset is chunked into two sets, training and testing (normally 80% for training and 20%
for testing). Records or rows are selected either randomly or sequentially.

3.	 An input variable (or variables) is determined or picked.

4.	 An applicable learning algorithm is chosen (such as linear regression).

5.	 The selected algorithm is executed on the training set, whereas the efficiency of the model is
evaluated with the testing set.

6.	 If the output or predicted result is correct, then the model is accurate. If not, steps 1 to 5 are
repeated with a different algorithm.

7.	 New sets of data are provided to the trained model and outputs are received.

Important note
If the output does not result in the correct classification or is not near the calculated value,
the input dataset is thoroughly analyzed again using EDA features and processed further, and
training is conducted. In the case of regression, the effectiveness of the regression predictive
model can be measured by calculating the Root Mean Square Error (RMSE).

A supervised model uses prior observations, data, and inputs to classify or predict the new output. This
type of algorithm is useful in daily, basic activities. It will not work if the data is different for training
and testing sets. For complex, inaccurate input data, these models will require lots of computation
and might not reveal accurate results.

Supervised learning can be used in data filtering, house price prediction, sentiment analysis, spam
detection, classifying images, fraud detection, and more.

Based on the applicable problems, supervised learning algorithms are basically classified into two
types – classification and regression.

Introduction to ML 257

Classification

Grouping, identifying, or categorizing a data model based on the attributes is known as classification.
The classification technique normally involves an arrangement based on similarities or dissimilarities
and is also known as the sorting technique. In this technique, categories or classification labels, also
known as classes, are pre-determined or set in advance. The classification model identifies which
category a dependent variable belongs to, based on the single or multiple independent variables.

Some of the common classification algorithms are listed here:

•	 Linear classifier: The simplest form of classification algorithm, it classifies a set of data based
on a simple linear function, assuming data is distinguishable linearly by plotting a straight
line on a graph.

•	 Support Vector Machine (SVM): A classifier that separates data into multiple sets, based on
boundaries (hyperplanes), by detecting overlapping data. If the dimensions are greater than
the number of samples, SVM can be used. The SVM algorithm creates points that are closest
to the line from different dimensions called Support Vectors (SVs). The SVM algorithm
results in high accuracy, with a dataset that has less noise (overlapping). Outlier detection is
one of the major advantages of the SVM algorithm. The SVM algorithm is not really suitable
for large datasets, as the training complexity is high, and the model makes decisions on top of
complex boundaries.

•	 K-Nearest Neighbors (kNN, k-NN, or KNN): KNN is known for its high accuracy. It stores
available data, generates new data points based on the similarity, and finds the nearest neighbor.
It calculates the Euclidean distance (between two points) on K number of neighbors. KNN
is often used on top of large datasets. It is also a bit slow, as it has to generate and calculate
distances between new data points.

•	 Decision tree: This algorithm uses a set of rules to make decisions. Rules are set in the form
of a tree structure that contains a root (issue), branches (decision rules or decision nodes), and
leaves (leaf nodes) representing the outcome. A tree branch node can have multiple branches.
Training datasets are broken down into many subsets by applying rules with categorical and
quantitative data. Data in the tree must be numerical. It’s comparable to the thinking ability
of humans and deeply nested if-elif statements in coding. A decision tree with a large
number of branches is complex and time-consuming.

•	 Random forest: This is a random collection of decision trees (a forest), where multiple results
are combined into a single value treated as output. Random forest is also known as ensemble
learning. It reduces overfitting, as the result is often an average value of decision trees. Because
of its suitability for noisy datasets, scalability, low training time, and highly accurate results, it
is used on large datasets.

Classification learning can be applied in various situations; for example, images of clothes can be
classified by color name, emails in an inbox can be classified as spam or not spam, or common diseases
can be classified by studying symptoms.

Machine Learning and Web Scraping258

Regression

Regression estimates the relationship between variables. It is also known as a predictive algorithm. A
regression model attempts to determine the strength of the relationship between dependent variables
and one or more independent variables. The output variable in regression is generally a quantitative
value. Normally, regression techniques are applied to make predictions from a given set of inputs called
predictors. A strong statistical background is necessary to handle regression algorithms.

Listed here are a few common types of regression algorithms:

•	 Linear regression: Also known as Simple Linear Regression (SLR), this is used to predict one
(dependent variable) value based on the value of one independent variable. It finds the linear
correlation between variables, using the best-fitting straight line. It is best for small datasets
and results in continuous output.

•	 Multilinear regression: Also known as Multiple Linear Regression (MLR) is a type of linear
regression model. It models linear and non-linear relationships with more than one independent
variable and one dependent variable. The output reflects the influence or relationship between
multiple independent and single dependent variables.

•	 Logistic regression: This is also known as a statistical regression model or probabilistic algorithm,
which helps in analyzing datasets. This algorithm is used to find the best-fitting model that
calculates the probability of binary types (such as yes and no). It also describes the relationship
between diploid (the involvement of two possible outcomes) or dependent variables and sets
of predictors. In terms of the number of variables, the algorithm describes the relationship
between multiple independent and single dependent variables. This regression technique results
in a discrete output and is used mostly with classification-related problems.

•	 Polynomial regression: Polynomial regression describes non-linear relationships. Generally,
if there’s no possibility of a linear relationship between dependent and independent variables,
it might be a case of polynomial regression. Polynomial regression is also considered a special
case of MLR. With a trained model, a non-linear equation is created and used for prediction.

There are many more forms of regression learning. Measuring the effectiveness of algorithms is also
quite challenging. A few techniques, such as Ordinary Least Squares (OLS) and R-Squared (R2),
are used to minimize the possibility of errors. OLS estimates the coefficients of linear regression. It
minimizes the sum of squared residuals between actual and predicted values. R2, with values between
0 and 1, calculates the variation percentage of the dependent variable. The greater the value of R2,
the better the model is.

Regression-based learning can be used in cases such as weather forecasting, sale price prediction,
house price prediction, and stock markets.

Introduction to ML 259

Important note
There are a few supervised ML algorithms that can be used for both regression and classification.
Logistic regression is most often used for classification-related problems. SVM, being a deep
learning model, is used for both classification and regression. Similarly, algorithms such as
random forest, kNN, and decision tree are also used for both types of supervised learning.

Choosing the best learning model depends on the type of data, the volume of data, the correlation
between columns of data, processing time, expected output, the inclusion of variation in data,
and many more factors.

With data collected using web scraping, a supervised form of ML is the most used format for analysis
and decision-making. In the next section, we will explore unsupervised ML.

Unsupervised learning

Unsupervised learning is effective in discovering trends and finding hidden patterns in data. In
unsupervised learning, the algorithms are left to detect, explore, and learn on their own. There is
nothing to supervise the learning process. This type of learning is beneficial in the field of data mining,
and also when we are not sure of what we are looking for.

In comparison to supervised learning, unsupervised learning tasks are complex, with many challenges.
In unsupervised learning, time to prepare data and perform preliminary analysis is not required. Hidden
or unknown patterns of data are exposed, which is not possible in supervised learning. Results from
unsupervised learning might be low in accuracy, in comparison to supervised learning.

Unsupervised learning is mostly divided into two parts:

•	 Clustering

•	 Association

In the next section, types of unsupervised learning are introduced.

Clustering

Clustering is a process of grouping, sorting, categorizing, and classifying data or objects. Classification
models in supervised learning also group and categorize input objects. Classification models are
provided with predefined categories or group names, whereas in clustering the groups or categories
are generated after processing the data.

Groups or clusters of data generated will contain data with similar characteristics and types. The
flexibility of clustering is the most in-demand feature. Learning models, once trained, can be used in
various other scenarios.

Machine Learning and Web Scraping260

K-means clustering, one of the most widely used clustering algorithms, demands the value of k. Here,
k refers to the number of clusters that are to be created or the data that is to be divided and put into
groups. It identifies a seed point as a centroid (mean point) in the current cluster and collects data in
a cluster that is nearest to the centroid.

Similar to kNN, distance measurement (Euclidean) is conducted between pieces of data or data points,
and is used to create or separate clusters that are similar and dissimilar. kNN and k-means clustering
are often categorized as search-based (learning) algorithms. The data points use themselves to find
other data points.

Association

Association helps to discover new patterns, find relationships in data, and produce information from
large datasets. It identifies the frequency of patterns in a dataset. In addition, it maps the data based
on its dependencies.

Association, also known as Association Rule Mining (ARM), tries to identify associations among
dataset variables. One of the common algorithms used for ARM is Apriori, which discovers the
most frequent data items in datasets and identifies associations and correlations among them. ARM
is normally processed in large datasets, but is likely to carry lots of noise as there is the possibility of
the number of associations being infinite. Most of the time, binary attributes such as yes and no are
used to define association rules.

Please refer to Chapter 10 for more detailed information. In the next section, we will learn about the
basics of the reinforcement type of learning.

Reinforcement learning

This type of learning algorithm uses and recognizes its environment and learns the behaviors by
accessing data patterns or trains its learning model based on trial and error (also known as the reward
and punishment model). Reinforcement learning is about making decisions or learning actions (based
on the situation) and their feedback, which results in the maximum reward.

Reinforcement learning algorithms learn from a chain of action that is almost similar to decision tree
processing. For example, situation-based input results in output that becomes input for the next cycle
and so on, until a decision is made or obtained.

Reinforcement Agents (RAs), also called AI-driven systems, are self-trained and make the decision
to resolve an assigned task based on the training data. To analyze or recognize situations, external
agents and systems such as software (logs), system settings, browser-based extensions, cameras in
machines, and more are used to find the most information possible about the situation.

So far in this chapter, information regarding ML-related features has been explored. Now, we will
build an ML model and use practical concepts of some ML types that can be applied for predictions
and analyzing sentiments.

ML using scikit-learn 261

In the next section, we will explore practical ML using Python programming.

ML using scikit-learn
To develop a model, we need datasets. Web scraping is again the perfect technique to collect the desired
data and store it in the relevant format. There are plenty of ML-related libraries and frameworks
available in Python, and they are growing in number. scikit-learn is a Python library that addresses
and helps to deal with the majority of supervised ML features.

scikit-learn is also known and used as sklearn. It is built upon numpy, scipy, and matplotlib.
The library provides a large number of features related to ML aspects such as classification, clustering,
regression, and preprocessing. We will explore beginner and intermediate concepts of the supervised
learning type with regression using scikit-learn. You can also explore the sklearn user guide available
at https://scikit-learn.org/stable/user_guide.html.

We have covered a lot of information about regression in previous sections of this chapter. Regression
is a supervised learning technique that is used to make predictions based on labeled data. In the next
sections, SLR is explored with a few examples.

Simple linear regression

SLR is used to estimate the relationship between an independent variable and a single dependent
variable. It is usually used as the default regression technique and is used to predict the value of one
variable based on the value of another variable, which is also known as the predictor variable or input
variable for SLR.

We will now discuss certain SLR concepts using code. The code files can be found here: https://
github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-
Edition/blob/main/Chapter11/Chapter11_regression.ipynb.

The data (Fish.csv) used for the examples has been collected from Kaggle (https://www.
kaggle.com/datasets/aungpyaeap/fish-market/download) and has been read to
a DataFrame named input using pandas. For charts and graphs, plotly will be used.

As seen in the following code, we import regular libraries such as pandas, numpy, and plotly.
The Fish.csv data file has been read using the pandas method read_csv(), which will create
a DataFrame type of object named input:

import pandas as pd
import numpy as np
import plotly.express as px
pd.options.plotting.backend = "plotly" # use plotly as plotting option
input = pd.read_csv("Fish.csv")        # load data

https://scikit-learn.org/stable/user_guide.html
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/blob/main/Chapter11/Chapter11_regression.ipynb
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/blob/main/Chapter11/Chapter11_regression.ipynb
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/blob/main/Chapter11/Chapter11_regression.ipynb
https://www.kaggle.com/datasets/aungpyaeap/fish-market/download
https://www.kaggle.com/datasets/aungpyaeap/fish-market/download

Machine Learning and Web Scraping262

input contains data about a few fish species, including measurement-related, as listed here:

•	 Species: Species name

•	 Length1: Vertical length in cm

•	 Length2: Diagonal length in cm

•	 Length3: Horizontal length in cm

•	 Weight: Weight of fish in g

•	 Width: Diagonal width in cm

The pandas method info(), as shown in Figure 11.1, displays the column names, Dtype (data type,
such as object or float), and null or non-null count-like information from the DataFrame input:

Figure 11.1: Dataset info Fish.csv

As seen in Figure 11.1, there is a total of seven columns in the dataset. Six of them are of the float
type, and in total there are 159 rows of records. The dataset looks clean, as there are no null values.

Studying the dataset is compulsory to keep an eye on preprocessing activity such as filling in null
values, dropping duplicates, converting data types, and sorting. These activities are compulsory as,
during regression processing, we need to find independent and dependent data as variables, and can’t
compromise on the output (prediction) quality.

The input.describe() code works only with statistical value-carrying columns. With the
include='all' parameter, even string and other objects can be included, as seen in Figure 11.2.
We can see that, among the seven unique species, Perch is the one that occurs most; it occurs 56 times
out of 159.

ML using scikit-learn 263

Figure 11.2: Describing details of dataset columns

Individual counts, or the value_counts() method of the species, are plotted using the following code:

species_count = input.Species.value_counts()
species_count.plot(title="Species Count", labels=dict(index="Species_
Name", value="Species_Count", variable="Fish"))

As seen in Figure 11.3, Species_Count, or the number of occurrences of certain species, is counted
from the DataFrame input and plotted with the species name:

Figure 11.3: Plotting species count

Machine Learning and Web Scraping264

While analyzing the dataset, there seem to be many correlated factors. Therefore, we will predict
Weight by training a model on values of Length3, only for the targeted species named Perch:

perch = input[input.Species=="Perch"]

A Plotly scatter plot supports the regression trends using the trendline argument (https://
plotly.com/python/linear-fits/#linear-fit-trendlines-with-plotly-
express), as implemented in the following code. This code uses ols as the trendline argument:

fig = px.scatter(perch, x="Length3", y="Weight", trendline="ols")
fig.show()

As seen in Figure 11.4, we can find the linear equation along with the calculated value of R2, the
coefficient, intercept, and the predicted weight for the chosen Length3. The ols argument for
trendline calculates this for us, and we can interpret Length3 and the weight of Perch in the
chart displayed in Figure 11.4:

Figure 11.4: OLS trendline, Length3, and weight of Perch

From Figure 11.4, we can obtain the following listed properties of the SLR equation:

•	 R2: 0.920652 (accuracy score – 1 is the highest)

•	 Linear equation: Weight = 35.0009 * Length3 + -652.787

•	 Intercept: -652.787

•	 Coefficient: 35.0009

Important note
Values such as R2 and coefficient help us to validate the model. It should also be noted that we
have not used sklearn yet.

https://plotly.com/python/linear-fits/#linear-fit-trendlines-with-plotly-express
https://plotly.com/python/linear-fits/#linear-fit-trendlines-with-plotly-express
https://plotly.com/python/linear-fits/#linear-fit-trendlines-with-plotly-express

ML using scikit-learn 265

To predict Weight using the Length3 value (of the species named Perch) using sklearn, we
need to use the following process:

1.	 Identify dependent and independent variables.

2.	 Split the data into training and testing sets.

3.	 Create a linear regression model.

4.	 Fit the linear regression model with training data.

5.	 Finally, make predictions on the test data.

As seen in the following code, sklearn has various modules, such as model_selection,
linear_model, and metrics:

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score, mean_
absolute_error

train_test_split() is provided with Length3 and Weight values. This will create training
and testing sets. A training set will occupy 80% of the values as set by train_size, and the remaining
20% will be taken by the testing set. There’s also an extra parameter, shuffle, being used, which
randomizes the order of records available:

X_train, X_test, y_train, y_test = train_test_split(perch.Length3,
perch.Weight, train_size=0.8, shuffle=True)

The model named lr is created by fitting it with the training data. The fit() method is provided
with training data:

lr = LinearRegression().fit(X_train, y_train)
type(lr)
sklearn.linear_model._base.LinearRegression

dir(lr)
['__abstractmethods__', …., '_more_tags', '_parameter_constraints',…
.,'coef_', 'copy_X', 'feature_names_in_','fit', 'fit_intercept',
'get_params', 'intercept_', 'n_features_in_', 'n_jobs', 'positive',
'predict', 'rank_', 'score', 'set_params', 'singular_']

As seen in the preceding code, with the lr model having been created, we can explore some of the
important lr attributes as follows:

lr.intercept_     # array([-634.55508041])
lr.coef_          # array([[34.68344575]])
lr.rank_          # 1
lr.score(X_train, y_train)          # 0.9277688566667214

Machine Learning and Web Scraping266

In the preceding code, we are going to predict weight based on the data available or X_test. The
weight_pred prediction array can now be made using the lr model, the predict() method,
and X_test with 20% of the records used to predict Weight:

weight_pred = lr.predict(X_test)
weight_pred
array([[461.4418054], [180.5058948],[801.33957378],[659.13744619
], [544.68207521], [801.33957378], [360.85981271], [204.78430682],
[731.97268228],  [284.55623206], [232.53106343],[274.15119833]])

Similar to X_test values, we can provide the model predictor with a new value of Length3 and
get the predicted result (Weight):

lr.predict(np.array([[20.5]])) [0] [0]
76.45555753771407
lr.predict(np.array([[29.5]]))
array([[388.60656932]])
lr.predict([[29.9,]])
array([[402.47994762]])

By having the prediction model ready, we can also use it to calculate the performance and evaluate the
model itself using methods from sklearn.metrices. r2_score (0.86) is also interpreted as
the accuracy score, which floats between 0 and 1 – the higher the score, the better the accuracy. This
shows that the model is acceptable to predict outcomes:

mean_squared_error(y_test, weight_pred)
9910.93927217145
mean_absolute_error(y_test, weight_pred)
87.86230207025248
mean_squared_error(y_test, weight_pred, squared=False)
99.5537004443
np.sqrt(mean_squared_error(y_test, weight_pred))
99.5537004443
r2_score(y_test, weight_pred)
0.8681631783134378

Important note
The Mean Squared Error (MSE) value of 9910.9392 is the mean of the sum of the square of
residuals. The RMSE value of 99.5537 is the square root of the MSE. The Mean Absolute Error
(MAE) value of 87.8623 is the mean of the sum of the absolute values of residuals. In general
cases, the MSE is always greater than the MAE.

We have explored SLR techniques in this section with code examples, as well as identifying various
attributes from sklearn. In the next section, we will be using MLR.

ML using scikit-learn 267

Multiple linear regression

MLR is used when there is a correlation between multiple independent variables and a single dependent
variable. In this case, we want to check the correlation of values from the Width and Height columns
with Weight for the Perch species in the dataset used in SLR in the Simple linear regression section.

We will now discuss certain MLR concepts using code, and here is where the code files are
available: https://github.com/PacktPublishing/Hands-On-Web-Scraping-
with-Python-Second-Edition/blob/main/Chapter11/Chapter11_multi_
regression.ipynb.

inDepd contains independent variables collected from Perch, whereas depd is the Weight
dependent variable:

inDepd = perch[['Width', 'Height']]# independent variables
depd = perch['Weight']            # dependent variable

Again, 80% of the values are used for training and 20% for testing. Training and testing sets are created
using the train_test_split() method of the sklearn.model_selection model:

X_train, X_test, y_train, y_test = train_test_split(inDepd, depd,
train_size=0.8, shuffle=True)

The mlr model is created and fitted or trained using the training dataset:

mlr = LinearRegression().fit(X_train, Y_train)
mlr.score(X_train, y_train)
0.9560246146854837

X_train contains multiple pieces of data to train the model, as seen in Figure 11.5:

Figure 11.5: X_train with multiple independent variables

https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/blob/main/Chapter11/Chapter11_multi_regression.ipynb
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/blob/main/Chapter11/Chapter11_multi_regression.ipynb
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/blob/main/Chapter11/Chapter11_multi_regression.ipynb

Machine Learning and Web Scraping268

After training, the mlr model is used to predict the data from X_test. It is also to be noted that
r2_score is 0.81799, which is acceptable in MLR cases:

weight_pred_mlr = mlr.predict(X_test)
weight_pred_mlr
array([643.07827704,96.06295718,228.07992289,76.27638592,136.430909,
143.8607218,163.98405844, -300.15848523,
446.23998044,  291.21291802,  944.3976018, 243.67945607])

r2_score(y_test, weight_pred_mlr)
0.817999125036539

Inputs for Width and Height can also be provided directly to mlr.predict(). For example,
see the following code block:

mlr.predict(np.array([[3.45, 6.05]]))
array([154.53150904])

mlr.predict(np.array([[7.10, 11.22]]))
array([807.225824])

Important note
As seen in the code implementation in this section, scikit-learn possesses a large set of assets for
various ML-related concepts. If users are seeking a large number of statistical and quantitative
values from their ML models, then statsmodel and scipy are more applicable, because
of the short code.

In the next section, we will use an NLP-related technique.

Sentiment analysis

NLP is a subset of ML, and sentiment analysis is a subset of NLP. Using sentiment analysis, we can
detect whether the sentiment of a text is positive, neutral, or negative. Sentiment analysis is done on
text, reviews, feedback, and more.

This analysis helps to evaluate client or customer reviews and feedback and whether they are intended
as positive or negative. The detected sentiment allows better marketing, and companies, e-commerce
sites, banks, travel offices, and many more organizations can monitor and manage their strategies,
marketing policy, product branding, customer needs, and more.

We will be using code and examples in the following sections that are available at https://github.
com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/
blob/main/Chapter11/Chapter11_textblob_vader.ipynb.

https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/blob/main/Chapter11/Chapter11_textblob_vader.ipynb
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/blob/main/Chapter11/Chapter11_textblob_vader.ipynb
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python-Second-Edition/blob/main/Chapter11/Chapter11_textblob_vader.ipynb

ML using scikit-learn 269

The nltk Python library is one of the pioneers of NLP. There are plenty of ways that NLP can be used, such
as classification. In the current case, we will be using the textblob and vaderSentiment libraries:

•	 textblob: This is a text-processing library, built on top of nltk. It can be used for various
NLP aspects, such as POS tagging, sentiment analysis, lemmatizing, tokenizing, and text
classification. To analyze the sentiment of text, textblob calculates and returns polarity
and subjectivity as sentiment results:

	� polarity: Indicates the positive or negative sentiment of the text. The values range from
-1 (very negative) to 1 (very positive), with 0 being neutral.

	� subjectivity: Indicates personal feeling. The values range from 0 (objective) to
1 (subjective).

•	 vaderSentiment: This is a social media sentiment analyzer. Similar to TextBlob, Valence
Aware Dictionary and Sentiment Reasoner (VADER) is a rule-based sentiment analyzer.
VADER has been trained with a large collection of social media texts. vaderSentiment
returns these four elements:

	� compound: This is the valence score of words in the lexicon. Values range from -1 (extremely
negative) to 1 (very positive).

	� pos: A positive value with a compound score of >=0.05.

	� neg: A negative value with a compound score of <=-0.05.

	� neu: A neutral sentiment with a compound score of >=-0.05 and a compound score of <0.05.

Sentiment analysis is done upon the quote_details.csv data, which was scraped from the
http://quotes.toscrape.com/ URL in Chapter 8. The column named quote is only
required in the current case. It’s the only string or text element that will be used with textblob and
vaderSentiment to analyze sentiment. Individual columns or groups of selected columns can
only be read from a file by using the usecols parameter in pd.read_csv():

import pandas as pd
quotes = pd.read_csv("quote_details.csv",usecols=["quote"])
quotes['quote'][0]
'The world as we have created it is a process of our thinking. It
cannot be changed without changing our thinking.'

With the content read to be explored as the quotes DataFrame, in the following examples, we will
analyze the sentiment of the contents using two quite popular Python libraries.

http://quotes.toscrape.com/

Machine Learning and Web Scraping270

Example 1 – using textblob

The textblob library provides a class named TextBlob, which holds various text-processing-
related attributes and methods, such as tags, noun_phrases, words, and word_counts:

from textblob import TextBlob
text = TextBlob(quotes['quote'][1])
type(text)                # textblob.blob.TextBlob
print(dir(text))
['__add__',……,'ends_with', 'endswith', 'find', 'format', 'index',
'join', 'json', 'lower', 'ngrams', 'noun_phrases', 'np_counts', 'np_
extractor', 'parse', 'parser', 'polarity', 'pos_tagger', 'pos_tags',
'raw', 'raw_sentences', 'replace', 'rfind', 'rindex', 'sentences',
'sentiment', 'sentiment_assessments', 'serialized', 'split', 'starts_
with', 'startswith', 'string', 'strip', 'stripped', 'subjectivity',
'tags', 'title', 'to_json', 'tokenize', 'tokenizer', 'tokens',
'translate', 'translator', 'upper', 'word_counts', 'words']

To analyze the sentiment of text, TextBlob can be provided with a string or text and sentiment
access attribute. The sentiment attribute returns a Sentiment object with calculated values for
polarity and subjectivity. An object element – say, polarity – can be accessed as text.
sentiment.polarity:

text = TextBlob(quotes['quote'][1])
text.sentiment  # Sentiment(polarity=0.3, subjectivity=0.75)
text.sentiment.polarity   # 0.3

There is a total of 100 quotes available in the dataset. Therefore, iteration has been used to calculate the
sentiment of each record and collect them in Python lists named polarity and subjectivity:

polarity, subjectivity=[],[]
for quote in quotes["quote"]:
    text = TextBlob(quote)
    print(f" Text {text.sentiment}")
    polarity.append(text.sentiment.polarity)
    subjectivity.append(text.sentiment.subjectivity)

Finally, the collected polarity and subjectivity lists are added to quotes:

quotes['polarity']=polarity
quotes['subjectivity']=subjectivity

ML using scikit-learn 271

quotes, as seen in Figure 11.6, now has enough information about sentiment, which can be analyzed:

Figure 11.6: DataFrame quotes with polarity and subjectivity

The details related to sentiment are obtained from the chosen dataset using textblob. While we
use ready-to-use libraries for procedures like in this example, the result might not be more insightful
compared to the result we can obtain using the dataset.

So, vaderSentiment will be used on the same dataset (quotes) in the next section, which will
help generate more information and help in comparing the results obtained with textblob.

Example 2 – using vaderSentiment

The SentimentIntensityAnalyzer class of vaderSentiment has the polarity_score()
method, which accepts a string and returns four keys – pos, neg, neu, and compound. Each returned
key’s value is collected and added to the original DataFrame, quotes:

positive, negative, neutral, compound=[],[],[],[]
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
analyzer = SentimentIntensityAnalyzer()
for quote in quotes["quote"]:
    text = analyzer.polarity_scores(quote)
    positive.append(text['pos'])
    negative.append(text['neg'])
    neutral.append(text['neu'])
    compound.append(text['compound'])
quotes['positive']=positive
quotes['negative']=negative
quotes['neutral']=neutral
quotes['compound']=compound

Machine Learning and Web Scraping272

As seen in Figure 11.7, there’s only one record that satisfies the query, positiveQuotes:

Figure 11.7: Quote with maximum positive sentiment

The negativeQuotes = quotes.query("negative < 0.5 and polarity <
0.5") query returns 90 records.

Figure 11.8 displays the statistical details of all calculated and added column values. The highest
or maximum rated positive, negative, and polarity values are 0.57, 0.42, and
0.766, respectively.

Figure 11.8: Quotes with TextBlob and vaderSentiment values

Figure 11.9 shows the plotting of quotes[['positive', 'negative']]:

Summary 273

Figure 11.9: Plotting of positive and negative values

With some data and analysis done in this section, it might be fair to suggest that most of the records
found in quotes are neutral in nature.

Important note
Sentiment analysis using nltk involves more steps in comparison to textblob and
vaderSentiment. In addition, it has by far the largest collection of methods and attributes.
Please visit https://www.nltk.org/ for more details.

In this chapter, we learned about a few basics regarding ML and how ML, with its various techniques,
can be helpful and play a significant role in various situations when quality data scraped from the
web is provided.

Summary
Python programming makes a huge contribution in AI- and ML-related domains. In this chapter, we
have had only a glimpse of that. Quality data plays a very important role in ML. Whether collecting
data via web scraping and storing it or providing scraped data on the fly to an ML model, prepared data
is in demand. The better the quality of the data – and the more precise the data is – that we provide
to ML algorithms, and for plotting charts, the more accurate results, visualizations, and descriptive
plots we can expect.

We have now learned about ML concepts and various aspects of ML by exploring them. We have also
learned how to implement ML models and collect the results, if required, from various processes. To
summarize, we now have an overview of how to use scikit-learn and conduct sentiment analysis. ML
is data-driven and quality data is a basic requirement for ML models to provide accuracy.

In the next chapter, we will learn about a few further steps and topics that are beneficial and applicable
to web-scraped data and can be used in the web scraping process.

https://www.nltk.org/

Machine Learning and Web Scraping274

Further reading
•	 Machine learning:

	� https://www.ibm.com/topics/machine-learning

	� https://www.mygreatlearning.com/blog/what-is-machine-learning/

	� https://www.run.ai/guides/machine-learning-engineering/machine-
learning-automation

•	 Machine learning – Python:

	� https://scikit-learn.org/

	� https://www.w3schools.com/python/python_ml_getting_started.asp

	� https://realpython.com/tutorials/machine-learning/

	� https://machinelearningmastery.com/machine-learning-in-python-
step-by-step/

•	 Regression analysis:

	� https://www.alchemer.com/resources/blog/regression-analysis/

	� https://www.investopedia.com/terms/r/regression.asp

•	 Natural language processing:

	� https://www.nltk.org/

	� https://www.ibm.com/topics/natural-language-processing

	� https://hbr.org/2022/04/the-power-of-natural-language-processing

•	 Sentiment analysis:

	� https://monkeylearn.com/sentiment-analysis/

	� https://huggingface.co/blog/sentiment-analysis-python

	� https://aws.amazon.com/what-is/sentiment-analysis/

https://www.ibm.com/topics/machine-learning
https://www.mygreatlearning.com/blog/what-is-machine-learning/
https://www.run.ai/guides/machine-learning-engineering/machine-learning-automation
https://www.run.ai/guides/machine-learning-engineering/machine-learning-automation
https://scikit-learn.org/
https://www.w3schools.com/python/python_ml_getting_started.asp
https://realpython.com/tutorials/machine-learning/
https://machinelearningmastery.com/machine-learning-in-python-step-by-step/
https://machinelearningmastery.com/machine-learning-in-python-step-by-step/
https://www.alchemer.com/resources/blog/regression-analysis/
https://www.investopedia.com/terms/r/regression.asp
https://www.nltk.org/
https://www.ibm.com/topics/natural-language-processing
https://hbr.org/2022/04/the-power-of-natural-language-processing
https://monkeylearn.com/sentiment-analysis/
https://huggingface.co/blog/sentiment-analysis-python
https://aws.amazon.com/what-is/sentiment-analysis/

Part 5:
Conclusion

In this part, you will be provided with a few select advanced concepts that can be implemented
alongside or on top of scraped data or datasets, for advanced processing and features. You will also
learn about the jobs and career-related scopes related to web scraping and data science that are in
high demand globally.

This part contains the following chapter:

•	 Chapter 12, After Scraping – Next Steps and Data Analysis

12
After Scraping – Next Steps

and Data Analysis

So far, we have learned how to scrape the web, analyze the data collected, and apply machine learning
(ML) algorithms using Python programming.

This chapter will provide a basic introduction to some emerging concepts and technologies that are
becoming crucial in the field. Being able to draw insights and knowledge from data is in high demand,
and even supply-related scopes have been growing exponentially. From the fields of research to business,
the importance of data has grown rapidly. Artificial intelligence (AI)-based systems, powered by ML
logic, will continue to consume and generate more data.

In this chapter, we will learn about the following topics:

•	 What happens after scraping?

•	 Web requests

•	 Data processing

•	 Jobs and careers

Technical requirements
A web browser (Google Chrome or Mozilla Firefox) is required to explore the provided resources.

What happens after scraping?
Web scraping is a method of collecting and supplying quality data, and applying various techniques
that depend on data. Any faculty or domain that involves data provides the opportunity to learn and
grow as data collected from scraping is used for many other tasks such as analysis, reporting, dataset
creation, and mining. Web-scraping-related techniques have always been dynamic and challenging,
alongside the growth of web-based technologies.

After Scraping – Next Steps and Data Analysis278

Systems based on data, returning raw data, processed data, and visualization plots, in the form of images
and videos, are growing by involving global audiences in multiple forms. Information technology
(IT)-driven systems are core applications used in all industries, and Python programming has played
a major role in the development and processing of data-related systems.

Earlier chapters of this book presented various steps that consolidated a few main concepts and
actions, as listed here:

•	 Demand for data

•	 Collection of data

•	 Data analysis (information generation)

•	 Use of data (ML/AI)

A large number of frameworks and programming languages are being developed. Applications related
to data, information, and knowledge management are most used in business- and research-based fields.

While we have discussed various features and techniques of web scraping and collecting data, as
entities are constantly being created and evolving, being able to adapt our approaches and techniques
is important. Some of the factors, such as the effectiveness of the system, consumption of time, content
volume, and availability of applicable technology, affect the overall web scraping process, and even
the steps carried out after data has been collected.

In the next section, we will introduce some advanced technologies and Python libraries that deal
with web-related requests.

Web requests
Throughout the chapters of this book, the requests Python library has been used to establish
communication between the code and the web. Plenty of Python libraries can be found at https://
pypi.org/ if we search for ones similar to requests.

The following subsections list some Python libraries and technologies and provide brief introductions
to them.

pycurl

The pycurl Python library (http://pycurl.io/) is a wrapper on top of the popular libcurl
library. libcurl is one of the earliest Python libraries that was used to communicate with websites
on the internet, based on the curl tool (also known as cURL).

curl (https://curl.se/) is a command-line tool that is used to connect and transfer data over
the web. curl is the basis of network communication; it’s a core implementation that is used with the
help of a wrapper across different operating systems (OSs), browsers, and machines that communicate

https://pypi.org/
https://pypi.org/
http://pycurl.io/
https://curl.se/

Web requests 279

with the internet. The curl command is machine-independent. Programming languages such as
Python, PHP, C, R, Java, and Rust convert the raw curl commands into their preferred format, which
can be used in their code or by their libraries.

pycurl, developed in the C programming language, provides curl-based facilities to Python code.
The requests library is often considered easy to use, in comparison to other libraries. pycurl
provides almost all of the same features and functionality as curl, including its attributes and methods.

Listed here are some of the major advantages that pycurl possesses over requests:

•	 Supports a large number of communication protocols (HTTPS, POP3, FTP, LDAP, IMAP,
and many more)

•	 Faster in comparison to requests and other similar Python libraries

Modern browsers even provide the raw curl command, which can be found using browser-based
developer tools, as mentioned earlier in Chapter 2. These curl commands can be copied for use
with the following:

•	 Command-line interface (CLI) applications (Bash shells or scripts) or terminals

•	 Web-based terminals and API tools such as Postman (https://www.postman.com/)

•	 Python libraries such as requests (https://curlconverter.com/python/)
with headers

•	 Converting a command into other programming languages

Figure 12.1 shows the curl command to load https://curl.se/ copied from the browser-based
developer tools using the Copy as cURL (bash) option.

Figure 12.1: curl command

https://www.postman.com/
https://curlconverter.com/python/
https://curl.se/

After Scraping – Next Steps and Data Analysis280

Important note
Using the Copy as cURL (bash) option is almost like copying request headers from the browser
developer tools. Browsers extract, prettify, and present such information with some formatting.
Postman also allows importing curl commands and presenting them in an HTML <form>-
based layout (editable text boxes and more), where developers can make their choices and
proceed with web requests, as well as carry out testing in parallel.

The curl command obtained through the browser, as seen in Figure 12.1, can be copied to https://
curlconverter.com/python and converted into Python code ready for libraries such as requests
and http.client. The following code is the converted/generated Python code for requests:

import requests
headers = {
    'authority': 'curl.se',
    'accept': 'text/html,application/xhtml+xml,
           application/xml;q=0.9, image/avif,
           image/webp, image/apng,*/*;q=0.8,
           application/signed-exchange;v=b3;q=0.7',
    'accept-language': 'en-US,en;q=0.9',
    'cache-control': 'max-age=0',
    'if-modified-since': 'Thu, 01 Jun 2023 10:05:02 GMT',
    'if-none-match': '"2153-5fd0e91e9a8fc-gzip"',
    'sec-ch-ua': '"Not.A/Brand";v="8", "Chromium";v="114",
              "Google Chrome"; v="114"',
    'sec-ch-ua-mobile': '?0',
    'sec-ch-ua-platform': '"Windows"',
    'sec-fetch-dest': 'document',
    'sec-fetch-mode': 'navigate',
    'sec-fetch-site': 'none',
    'sec-fetch-user': '?1',
    'upgrade-insecure-requests': '1',
    'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64;
               x64) AppleWebKit/537.36  (KHTML, like Gecko)
               Chrome/114.0.0.0 Safari/537.36',
}
response = requests.get('https://curl.se/',
headers=headers)

Using curl commands, even using pycurl, will help us significantly in learning how to use core
technologies related to web-based communication. As technical development-related processes are being
routed to AI-driven and ML-based systems, understanding these core concepts will make a difference.

https://curlconverter.com/python
https://curlconverter.com/python

Web requests 281

In the next section, we will learn about an add-on feature (middleware feature) that can be used in
web requests.

Proxies

A proxy or proxy web server (also known as middleware) is one of the most important and core
technologies in network communication, especially web scraping. Plenty of web security-related
challenges arise in network communication during scraping, and using a proxy helps us to overcome them.

Using a proxy when scraping usually hides the original machine’s IP. Be aware, however, that some
providers will not always hide the original IP. A proxy communicates with the target site using some
other secure IPs that are available through proxy service providers. A proxy works as middleware and
helps to bypass web security on physical machines. One of the most used proxy types in web scraping
is rotating residential proxies, which change the IP address on every new request.

The internet is open content. Web servers impose a large number of security measures to keep their
content safe. Many of you will have encountered some content that was blocked to view or access, which
can be overcome using proxies. In some way or another, either on public or on-premises networks,
proxies provide great security and filtering capabilities.

When dealing with web scraping for long-form content, such as daily blogs, reviews, stock information,
and ratings, there are various recurring scraping tasks for fixed sites, as well as scheduled scraping
options, including hourly intervals. However, it is important to consider the possibility of encountering
web security measures that could potentially lead to blocking, such as the following:

•	 IP blacklisting

•	 Facing CAPTCHAs on every page

•	 The inability to use filtering options

•	 Redirecting to pages that are not targeted (such as those hosted in a different country or in a
different language from that of the user)

•	 Redirecting to the first page only

•	 Redirecting to the main page

These kinds of things can lead to wasted time, financial loss, loss of disk and web space, collecting
irrelevant data, reduced quality of data, and much more. To resolve this, developers need to use and
implement web-based penetration testing, such as using proxies; selecting rotating IPs for a selected
country, a random combination of proxies with User-Agent, or randomized or standard request
headers; or executing curl commands in the terminal to verify content.

Listed here are some of the situations in which proxies can be helpful:

•	 Overcoming territory (border-based) restrictions

•	 Preventing blacklisting

After Scraping – Next Steps and Data Analysis282

•	 Rotating the IP address

•	 Performance enhancement

•	 Bypassing CAPTCHAs, malware, spam, and more

•	 Overcoming blocked access

•	 Implementing privacy features

With numerous advantages of using proxies, there are two significant disadvantages too, as listed here:

•	 Extra financial requirements (buying proxies)

•	 Extra configuration (on top of the existing network and code)

Proxies are often found and prescribed for use with scraping or crawling tasks.

As seen in the following sample code template, the Python random library’s shuffle method is
being used to randomize values from user_agents and proxyList. The following code will not
run until and unless we acquire a paid subscription from the website for the valid api-key, which
results in multiple collections of IPs with ports for http and https:

import requests
import random
user_agents = ['Mozilla/5.0 (iPhone; CPU iPhone OS 16_5 like Mac
OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) CriOS/114.0.5735.99
Mobile/15E148 Safari/604.1', 'Mozilla/5.0 (iPod; CPU iPhone OS
16_5 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko)
CriOS/114.0.5735.99 Mobile/15E148 Safari/604.1', 'Mozilla/5.0
(X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/114.0.0.0 Safari/537.36', 'Mozilla/5.0 (Windows NT 10.0;
Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0
Safari/537.36',]
proxyList = dict(requests.get("https://api.demo-web.com?api-
key=XXXX-XX-XXXX-XXX&zone=US&type=multiple&timeloc=12h&channel=chr_
moz").content)
proxyList = {'http':['xxx.xxx.xxx.xxx:xx', 'xxx.xxx.xxx.xxx:xxx','xxx.
xxx.xxx.xxx'],
'https':['xxx.xxx.xxx.xxx:xx','xxx.xxx.xxx.xxx:xxx', 'xxx.xxx.xxx.
xxx'],}
def rand_output(input):
    return random.shuffle(input)
response = requests.get('https://www..…com',
headers={'User-Agent': rand_output(user_agents)},
proxies = rand_output(proxyList['https'])).text

proxyList contains a list of IPs that have visited the service provider pages. IPs can also be collected
using API requests to proxy providers. The rand_ouput function receives a Python list() object

Data processing 283

and returns the shuffle list. requests supports the headers and proxies arguments, and
more, where desired values can be provided.

Most cloud-based platforms and web hosting organizations provide an option if required to
use their in-house proxy services or even allow using third-party proxy settings through some
additional configuration. Many proxy providers use a web API and allow users to access proxies
using some authentication system (an API key). Users can search https://www.google.com/
search?q=proxy+providers on Google to find the best proxy solution and use or choose the
appropriate solution.

Important note
There are plenty of browser-based extensions that provide virtual private network (VPN) access,
rotating IPs, and more. Python libraries also exist for proxies, user agents, generating security-
related tokens, and more. These extensions and libraries might cause system vulnerabilities,
or work temporarily or permanently, but it’s the responsibility of the users to do the proper
research before deciding whether to use them.

In the next section, we will introduce some new tools and applications that are useful in data processing.

Data processing
Data processing, in the context of web scraping, refers to storing, handling, managing, and analyzing
the data that is generated from scraping. In previous chapters of the book, we focused on the concept
of effective and efficient scraping with code examples.

As the demand for data is growing, technologies are also evolving and adapting to new changes.
Currently, as there has been a boom in AI/ML-based systems, there is competition to provide easy
and quick solutions to problems without compromising on quality.

In the coming sections, we will introduce some technologies that help with data processing.

PySpark

The Python library for Apache Spark, pyspark (https://spark.apache.org/), is used to
process and analyze data, especially of a large volume. Spark is a framework that is used to handle
big data (data with variety, volume, and velocity) and is more effective than Hadoop (https://
hadoop.apache.org/), a framework for parallel processing, scheduling, and resource management.

Apache Spark is famous for its distributed processing system, data processing, effective clustering
of the environment, CLI applications, and parallel processing for large volumes of data. It is based
on Hadoop’s MapReduce, with additional optimization for fast computing, and is also available for
various programming languages, such as C#, Java, and Python.

https://www.google.com/search?q=proxy+providers
https://www.google.com/search?q=proxy+providers
https://spark.apache.org/
https://hadoop.apache.org/
https://hadoop.apache.org/

After Scraping – Next Steps and Data Analysis284

pyspark is known for its lazy computation and analyzing big data and is supported by Spark
functionalities such as the following:

•	 In-memory processing

•	 Using Structured Query Language (SQL) on DataFrames

•	 Using the pandas API

•	 The inbuilt MLlib ML library

•	 Computational speed

•	 Fault tolerance

PySpark also uses the Python pandas API, so most of the activities that can be done using
pandas are applicable using PySpark, with the additional added benefits and facilities of Apache
Spark. Generally, for large datasets, PySpark is very effective. PySpark’s features can also be used
independently, such as only for data analysis, using ML, distributing datasets into chunks, and merging
selected chunks of a dataset.

PySpark, like pandas and other Python libraries, can be used for visualization, data cleaning, data
formatting, data sampling, and more. Spark DataFrames possess similar attributes to those in pandas,
and have many advanced functionalities implementing various features of the Spark framework. Please
visit https://spark.apache.org/docs/latest/quick-start.html and https://
sparkbyexamples.com/ for more details.

In the next section, we will look into a Python library that is rising in popularity due to its processing speed.

polars

The polars (https://www.pola.rs/) Python library is a data analysis library considered
to be one of the fastest DataFrame libraries. Built using the Rust programming language, polars
is designed for faster and more efficient computing. polars has been found to be more effective
compared to Python’s pandas while working with large datasets.

Code written in polars is a bit longer and not quite as readable as in pandas. Listed here are a few
benefits of polars, which make it favorable over other data analysis libraries:

•	 Graphics processing unit (GPU) integration

•	 Lazy evaluation (executing only when required)

•	 Parallel processing of operations

•	 Online analytical processing (OLAP) query engine implemented in Rust

•	 Single instruction, multiple data (SIMD)-based vectorization (processing of multiple datasets
with a single instruction) implemented by modern processors

https://spark.apache.org/docs/latest/quick-start.html
https://sparkbyexamples.com/
https://sparkbyexamples.com/
https://www.pola.rs/

Jobs and careers 285

polars uses Apache Arrow, or Arrow (https://arrow.apache.org/), arrays, whereas
pandas uses NumPy arrays. Arrow uses a language-independent columnar memory format for data.

Arrow recommends Apache Parquet (https://parquet.apache.org/), a file format that
implements data compression and encoding schemes. The use of Parquet is growing rapidly, as it is
fast in comparison to CSV and JSON, and supports storing data in a columnar format. One of the
major benefits of Parquet files is in data loading; they allow columns to be accessed without having
to load the whole data structure. Arrow is also compatible for use or implementation with pandas,
NumPy, PySpark, and more.

Important note
PyArrow is a Python library that implements Arrow. Arrow can be integrated with built-in
Python objects, such as NumPy and pandas. Arrow manages data and data types in the same
array, and the data in arrays is grouped to create tables. PyArrow implements data as a table.
Each array represents data in columns of a table. PyArrow is also integrated into pandas
through the ExtensionArray interface. It also enables the reading and writing of a table
to a DataFrame and vice versa.

In the next section, we will talk about the job market and careers that can be pursued with the context
and information we have discussed and explored throughout the chapters of the book.

Jobs and careers
In this book so far, we have covered various topics on Python programming and web scraping. We
have learned different techniques, particularly focused on data, including searching, acquiring, mining,
transforming, analyzing, and visualizing.

The availability of job opportunities that allow individuals to implement the learned skills while also
acquiring additional and up-to-date ones serves as a strong motivation to continue to learn and develop
their skills. Data-related careers offer attractive prospects globally, with excellent salaries offered.

In this section, we will provide a list of job titles related to web scraping and Python programming for
your reference. This is especially relevant for those interested in developing data-related skills (such
as data science and AI/ML), considering the current demand in the field.

Here are some job titles sourced from various job sites across the globe:

•	 Senior Python programmer

•	 Expert Python programmer

•	 Web scraper

•	 Data extractor

•	 Data researcher

https://arrow.apache.org/
https://parquet.apache.org/

After Scraping – Next Steps and Data Analysis286

•	 Historical data researcher

•	 Geo-data researcher

•	 Data scientist

•	 Data science practitioner

•	 Data analyst

•	 Data security

•	 Web security

•	 Data visualizer

•	 Data freelancer

•	 Data and big data engineer

•	 MIS expert

•	 Report developer (data-driven)

•	 Information analyzer

•	 Information practitioner

•	 ML engineer

•	 ML practitioner

•	 NLP practitioner

•	 Sentiment analyst

These job titles are just a few examples, and you can also consider exploring freelancing opportunities.
It is certain that you will encounter data and its related processing activities in various fields associated
with data science and management. Whenever tasks involve activities such as analysis, information
generation, information processing, and reporting, the skills we have acquired throughout the chapters
of this book will come into play.

Summary
In this chapter, we explored some of the hot technologies on the market and in the field of data science.
Technological frameworks and tools are always evolving. Therefore, it is the developer’s duty to keep
up with the latest updates in technologies.

Web scraping or data extraction is one of the core fields of data science, though data processing and
analyzing tasks closely follow. Collecting, gathering, and storing data from target websites using
scraping techniques used to be core aspects of web scraping. However, as there have been various
breakthroughs in systems that interact with data, providing quality data that can be directly implemented

Further reading 287

in the systems, stored in formats required by the customer, applicable for real-time processing, and
more are also to be considered.

Data or datasets are made available using APIs, through sites dedicated to providing tools for research,
and more. Web scraping comes into play when we require specific data from a target website in the
desired format. Data received in this way can be collected and merged with or appended to other data
or datasets, to create a dataset.

With the growing use of online applications and frameworks, whether it’s a small dataset or a dataset
with a large volume, or on-the-fly-collected records or rows resulting from scraping scripts, they
need to be accessible and performance-driven while interacting with data-related systems to verify
the demand of web scraping using Python programming.

We have reached the end of the book. Web scraping is a core task to be carried out in data science and
data-driven systems. It has always been dynamic, progressive, and assistive to the generation of data,
information, and knowledge. Topics such as AI, ML, data mining, NLP, and Python programming
are always associated in some way or the other with web scraping. Web scraping-related topics are
worth exploring from a career and knowledge perspective.

Further reading
•	 Data science:

	� https://aws.amazon.com/what-is/data-science/

	� https://www.ibm.com/topics/data-science

•	 Apache Arrow: https://arrow.apache.org/docs/python/

•	 Apache Spark: https://spark.apache.org/docs/3.3.1/api/python/index.html

•	 Data science – career:

	� https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-
the-21st-century

	� https://www.coursera.org/articles/data-science-career

	� https://www.discoverdatascience.org/career-information/

	� https://www.montecarlodata.com/blog-the-future-of-big-data-
analytics-and-data-science/

	� https://emeritus.org/in/learn/scope-of-data-analytics-in-the-
future/

	� https://www.knowledgehut.com/blog/data-science/data-scientist-
future

https://aws.amazon.com/what-is/data-science/
https://www.ibm.com/topics/data-science
https://arrow.apache.org/docs/python/
https://spark.apache.org/docs/3.3.1/api/python/index.html
https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century
https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century
https://www.coursera.org/articles/data-science-career
https://www.discoverdatascience.org/career-information/
https://www.montecarlodata.com/blog-the-future-of-big-data-analytics-and-data-science/
https://www.montecarlodata.com/blog-the-future-of-big-data-analytics-and-data-science/
https://emeritus.org/in/learn/scope-of-data-analytics-in-the-future/
https://emeritus.org/in/learn/scope-of-data-analytics-in-the-future/
https://www.knowledgehut.com/blog/data-science/data-scientist-future
https://www.knowledgehut.com/blog/data-science/data-scientist-future

After Scraping – Next Steps and Data Analysis288

•	 Python concurrency:

	� https://docs.python.org/3/library/concurrent.futures.html

	� https://vegibit.com/how-to-perform-parallel-programming-with-
pythons-concurrent-futures-library/

•	 AI and data:

	� https://www.mygreatlearning.com/blog/difference-data-science-
machine-learning-ai/

	� https://www.forbes.com/sites/nishatalagala/2022/11/10/ai-and-
data-sciencewhat-is-the-difference/?sh=81569d64b442

	� https://hevodata.com/learn/artificial-intelligence-in-data-
science/

•	 Big data: https://www.oracle.com/big-data/what-is-big-data/

https://docs.python.org/3/library/concurrent.futures.html
https://vegibit.com/how-to-perform-parallel-programming-with-pythons-concurrent-futures-library/
https://vegibit.com/how-to-perform-parallel-programming-with-pythons-concurrent-futures-library/
https://www.mygreatlearning.com/blog/difference-data-science-machine-learning-ai/
https://www.mygreatlearning.com/blog/difference-data-science-machine-learning-ai/
https://www.forbes.com/sites/nishatalagala/2022/11/10/ai-and-data-sciencewhat-is-the-difference/?sh=81569d64b442
https://www.forbes.com/sites/nishatalagala/2022/11/10/ai-and-data-sciencewhat-is-the-difference/?sh=81569d64b442
https://hevodata.com/learn/artificial-intelligence-in-data-science/
https://hevodata.com/learn/artificial-intelligence-in-data-science/
https://www.oracle.com/big-data/what-is-big-data/

Index

 A
Apache Arrow

URL 285
Apache Parquet 285

URL 285
Apache Spark 283

URL 283
application programming interfaces (APIs)

data formats and patterns 162, 163
used, for web scraping 166

Apriori 260
artificial intelligence (AI) 221
ASP.NET 144
ASP.NET-based form management

reference link 144
association 260
Association Rule Mining (ARM) 260
association rules 224
Asynchronous JavaScript and

XML (AJAX) 14, 15
reference link 15

B
Beautiful Soup

elements, searching 114, 115
elements, traversing 114-116
exploring 112
find_all() method 117-119
find() method 116, 117
installing 111, 112
iteration 121
next_element 119, 120
parsing 112-114
previous_element 119, 120
reference link 111
used, for web scraping 121-124
versus Python libraries 111

Beautiful Soup project
reference link 89

book analysis example 238-241
business intelligence (BI) 225

Index290

C
Cascading Style Sheets (CSS) 5, 16, 17

references 17
Cascading Style Sheets (CSS)

selectors 57, 64-66
attribute selectors 66, 67
element selectors 66
ID and class selectors 66
markup documents, processing 58
pseudo selectors 67

classification 224
classification algorithms

decision tree 257
K-Nearest Neighbors (kNN) 257
linear classifier 257
random forest 257
Support Vector Machine (SVM) 257

clustering 224, 259
collected data

handling 225
Command-Line Interface (CLI) 125, 279
comma-separated values (CSV) 229

files, processing 229-232
Composite API 159
cookies 139, 140

references 8, 45, 141
Copy as cURL (bash) option

using 280
crawlers 81
crawling 5
Create, Retrieve, Update, and

Delete (CRUD) 160
CSS selectors 87
curl 278-280

URLs 68, 278, 279
curl commands, converter

reference link 279

D
data

extracting, with regex 206
data analysis 106, 221, 223, 234, 235
Database Management Systems

(DBMSs) 253
data center proxy 152
data extraction, from PDF 211
data extraction, with PyPDF2 library 213

examples 214-217
data extraction, with regex

examples 206-211
data-finding techniques, in web pages 17

DevTools 19-22
HTML source page 17-19

data formats and patterns, API
examples 163-166

data mining 222-225
descriptive data mining 224
predictive data mining 224

data processing 283
data science 221
data types, ML

qualitative 252
quantitative 252

data verification 106
data visualization 235
data warehouse 223
decision tree algorithm 257
descriptive data mining 224

association rules 224
clustering 224
summarization 224

Developer Tools
(DevTools) 7, 19-22, 57, 68, 87

panels and tools 22-24
references 20

Index 291

using, to access web content 68
XPath and CSS selectors with 71, 72

Document Object Model
(DOM) 13, 58, 59, 89

reference link 59

E
element tree 58, 59
ensemble learning 257
exception handling

reference link 190
Exploratory Data Analysis

(EDA) 106, 235, 255
with ydata_profiling 235-237

Extensible Hypertext Markup
Language (XHTML) 9

Extensible Markup Language (XML) 9, 12
reference link 13

eXtensible Stylesheet Language
Transformations (XSLT) 60

URL 60

F
file handling 225, 226
find_all() method 117-119
find() method 116, 117
first-party cookie 140

G
GET method 6, 49
global regular expression print (grep) 197

reference link 197
Graphical User Interface (GUI) 33

H
Hadoop

URL 283
headless browsers

reference link 13
HTML documents

reading 75-77
HTML elements

and DOM navigation 69, 70
HTML form processing 138

with Python 142-146
HTML forms 139

reference link 139
HTML source page 17

accessing 18, 19
HTTP communication 37
HTTP cookies 8, 44, 45
HTTP headers 43
HTTP methods

GET 49
implementing 48
POST 50-52
reference link 139

HTTP page, MDN web docs
reference link 9

HTTP proxy 9, 152
HTTP requests 5, 6

GET method 6
POST method 7

HTTP responses 5, 7
content 46, 47

HTTP response status codes
reference link 7

HTTP status codes
reference link 144

Index292

Hypertext Markup Language (HTML) 9
elements 10, 11
global attributes 11
reference link 12

Hypertext Transfer Protocol (HTTP) 5
reference link 7, 9

Hypertext Transfer Protocol
Secure (HTTPS) 6

I
IDLE

reference link 33
information technology

(IT)-driven systems 278
Internal API 159
Internet Protocol (IP) address 151
internet-related resources 4
iteration

with PyQuery 95, 96

J
JavaScript 13, 14, 59
JavaScript Object Notation

(JSON) 7, 15, 16, 227
references 16

JavaScript XMLHttpRequest
(XHR) objects 15

job titles
for web scraping and Python

programming 285, 286
jQuery 14, 87, 89

URL 89
JSON encoder and decoder

reference link 99
JSON files

reading 227, 228
writing 228

K
Kaggle

reference link 261
K-means clustering 260
K-Nearest Neighbors (kNN) algorithm 257
knowledge discovery in

databases (KDD) 222
knowledge discovery (KD) 221

L
libcurl 278
linear classifier algorithm 257
linear regression algorithm 258
logistic regression algorithm 258
lxml 72, 73

for web scraping 77-80
modules 73
references 88, 89, 110

M
Machine Learning

(ML) 4, 27, 106, 221, 250, 251
data types 252
Python libraries 254, 255
Python libraries, for statistical and

numerical computation 253
Python programming 251
reinforcement learning 260
supervised learning 256
types 255
unsupervised learning 259

MapReduce 283
market analysis 224
markup 58
Mean Absolute Error (MAE) 266

Index 293

Mean Squared Error (MSE) 266
ML, with scikit-learn 261

multiple linear regression 267, 268
sentiment analysis 268, 269
simple linear regression 261-266

multilinear regression algorithm 258
Multiple Linear Regression

(MLR) 258, 267, 268

N
name-value pair 60
Natural Language Processing

(NLP) 29, 197, 268
next_element 119, 120
nltk Python library 269

URL 273
nodes 58
non-linear relationships 258
NumPy

arrays 285
URL 253

O
Object-Oriented Programming (OOP) 28
One-Time Password (OTP) 139
Open Library 165
Ordinary Least Squares (OLS) 258

P
pandas 237, 238
parsel

reference link 89
parsing 112-114
Partner API 159
PdfReader class

reference link 213

Playwright 175
reference link 175

plotly 237
polars 284, 285

benefits 284
URL 284

polynomial regression 258
Portable Document Format (PDF) 195, 211
Postman

URL 279
POST method 7, 50-52
predicate 62
prediction 224
predictive algorithm 258
predictive data mining 224

classification 224
prediction 224
regression 224

predictors 258
previous_element 119, 120
Private API 159
Product-as-a-Service (PaaS) 158
proxies 9, 151, 281-283

benefits 151
disadvantages 282
references 153
using 152-155
using, scenarios 281

proxy providers
reference link 153, 283

proxy server 9
Public API 159
Puppeteer 175

reference link 175
PyArrow 285
pycurl 278, 280

advantages, over requests 279
URL 68, 278

Index294

PyPDF2 library 212
features 212
reference link 212
using, for data extraction 213

PyQuery 87
attributes 92
element traversing 91
exploring 89
function-type elements 95
installing 89, 90
iterating with 95, 96
overview 88
pseudo-classes 92-94
reference link 88
verification functions 94
web URL, loading 91

PySpark 283, 284
Python 28

for Machine Learning (ML) 251
for web scraping 29, 30
HTML form processing 142-146
libraries 30
reference link, for applications 29
reference link, for success stories 29
references 27, 29, 180
references, for libraries 31
used, for web parsing 110, 111
WWW, accessing with 31

Python libraries
for Machine learning (ML) 254, 255
numpy 253
scipy 253
statsmodel 253
versus Beautiful Soup 111

Python Package Index (PyPI) 254
URL 254, 278

PyTorch 254
URL 254

Q
qualitative data 252, 253

structured data 252
unstructured data 252

quality analysis (QA) 106
quantitative data 252

continuous 252
discrete 252

quote analysis example 242-246
Quotes to Scrape

references 191

R
random forest algorithm 257
re.compile() method 202, 203
regex flags 204, 205

re.IGNORECASE 204
re.MULTILINE 204

regression 224
regression algorithms

linear regression 258
logistic regression 258
multilinear regression 258
polynomial regression 258

regression model 258
Regular-Expressions.info

reference link 204
regular expressions (regex) 67, 195-197

concatenation, using 199-201
escaped code, using 199
reference link 197
set of characters, using 198
using, to extract data 206
with Python 197

Reinforcement Agents (RAs) 260
reinforcement learning 260

Index 295

Relational Database Management
Systems (RDBMSs) 233, 253

re library 198
findall() method 198
match() method 198
search() method 198

Remote procedure calls (RPC) 160
representational state transfer (REST) 160
requests library 31, 40

general usage 42, 43
JSON, reading 48
reference link 39
supported HTTP methods 41

residential proxies 152, 281
re.split() method 201
re.sub() method 202
reverse engineering 5, 87

reference link 5
Robots Exclusion Protocol 81

URL 25
robots.txt file 81, 82

parsing 83
Root Mean Square Error (RMSE) 256
rotational proxy 152
R-Squared (R2) 258
Rust 284

S
scikit-learn 255

URL 255
scipy 253

URL 253
scraping 4, 5
Scrapy

features 125
URL 125
used, for web scraping 124, 125

Search Engine Optimization (SEO) 83
Secure Sockets Layer (SSL) 6

reference link 6
secure web content 138
selectolax project

reference link 89
Selenium 173, 174

advantages 175
components 176
disadvantages 175
exploring 181-183
form management 183, 184
HTML elements 184-187
reference link 173-175
use cases 175, 176
used, for web scraping 187

Selenium driver 177
Selenium Grid 177

reference link 177
Selenium IDE 177

reference link 177
selenium library

drivers, installing 178-180
reference link 177
setting up 177, 178
setup, verifying 180, 181

Selenium WebDriver 173, 176
reference link 176
using 177

sentiment analysis 268
textblob, using 270, 271
vaderSentiment, using 271-273

sentiment analysis (SA) 197
service providers, for proxies

URLs 155
session 46, 139-141

reference link 141

Index296

Simple Linear Regression
(SLR) 258, 261-266

Simple Mail Transfer Protocol (SMTP) 160
Simple object access protocol (SOAP) 160
Single-Factor Authentication (SFA) 142
sitemap 83
Sitemaps

URL 25
sitemap.xml 83
sklearn user guide

reference link 261
Software-as-a-Service (SaaS) 158
sorting technique 257
Spark by examples

reference link 284
spidering. See crawling
spiders 81
SQLite 233, 234
sqlite3 233
statistical regression model 258
statsmodel 253

URL 253
structured data

binary 252
nominal 252
ordinal 252

structured query language (SQL) 223, 233
summarization 224
supervised learning 256

classification 257
regression 258
working 256

Support Vector Machine (SVM)
algorithm 257

Support Vectors (SVs) 257
sys

reference link 33
system development life cycle (SDLC) 174

T
tags 58
technologies, for data processing

polars 284, 285
PySpark 283, 284

TensorFlow 254
URL 254

textblob 269
polarity 269
using 270, 271
vaderSentiment 269

tracking cookies 140
Transmission control protocol/Internet

protocol (TCP/IP) 160
Transport Layer Security (TLS) 6

reference link 6
Two-Factor Authentication (2FA) 141

U
unified APIs 159
unsupervised learning 259

association 260
clustering 259

URL handling 39
operations 39, 40

urllib3 library
reference link 39

urllib library 31
user authentication 141, 147

and cookies 147-150

V
vaderSentiment 269

using 271, 272
Valence Aware Dictionary and Sentiment

Reasoner (VADER) 269

Index 297

virtual environment 31
reference link 33

virtual private network (VPN) 283

W
web APIs 158

benefits 160, 161
Composite API 159
disadvantages 161, 162
Partner API 159
Private or Internal API 159
Public API 159
types 159

web bots 81
web content

accessing, with DevTools 68
web crawler

deploying 130-133
web pages 4, 5

data-finding techniques 17
web parsing, with Python 110, 111

Beautiful Soup 111
web requests 278

pycurl 280
web scraper, test site

reference link 91
web scraping 4, 5, 277, 278

with Beautiful Soup 121-124
with lxml 77-80
with Scrapy 124, 125

web scraping, with APIs 166
examples 166-170

web scraping, with PyQuery 96
book details, scraping 97-99
quotes, scraping with author details 102-107
sitemap to CSV 99-102

web scraping, with Scrapy 125
data, exporting 129
item, creating 128
project, setting up 125-127
spider, implementing 128, 129

web scraping, with Selenium 187
examples 187-193

web session 46
websites 4
web technologies, for process

of data extraction
Cascading Style Sheets (CSS) 16, 17
Extensible Markup Language (XML) 12, 13
Hypertext Markup Language (HTML) 9
Hypertext Transfer Protocol (HTTP) 5, 6
JavaScript 13, 14

web URL
loading 91

web wanderers 81
World Wide Web Consortium (W3C)

URL 60
World Wide Web (WWW) 27
World Wide Web (WWW),

accessing with Python 31
libraries, installing 35-37
setup process 31-33
URLs, loading 37, 38
virtual environment, creating 33-35

Index298

X
XML files

reading 73-75
XML Path (XPath) selectors 57

markup documents, processing 58
XML Query (XQuery) 60

URL 60
XPath 60, 87

URL 60
XPath expressions 60-64

absolute path 60
relative path 60

Z
Zyte

URL 125
Zyte Scrapy Cloud

URL 130

www.packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos from over

4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at packtpub.com and as a print book customer, you
are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.
com for more details.

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://www.packtpub.com
http://packtpub.com
mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Python Web Scraping Cookbook

Michael Heydt

ISBN: 978-1-78728-521-7

•	 Use a variety of tools to scrape any website and data, including BeautifulSoup, Scrapy, Selenium
and many more

•	 Master expression languages, such as XPath and CSS, and regular expressions to extract web data

•	 Deal with scraping traps such as hidden form fields, throttling, pagination, and different status
codes

•	 Build robust scraping pipelines with SQS and RabbitMQ

•	 Scrape assets like image media and learn what to do when Scraper fails to run

•	 Explore ETL techniques of building a customized crawler, parser, and convert structured and
unstructured data from websites

•	 Deploy and run your scraper as a service in AWS Elastic Container Service

https://www.packtpub.com/product/python-web-scraping-cookbook/9781787285217

301Other Books You May Enjoy

Python Automation Cookbook – Second Edition

Jaime Buelta

ISBN: 978-1-80020-708-0

•	 Learn data wrangling with Python and Pandas for your data science and AI projects

•	 Automate tasks such as text classification, email filtering, and web scraping with Python

•	 Use Matplotlib to generate a variety of stunning graphs, charts, and maps

•	 Automate a range of report generation tasks, from sending SMS and email campaigns to creating
templates, adding images in Word, and even encrypting PDFs

•	 Master web scraping and web crawling of popular file formats and directories with tools like
Beautiful Soup

•	 Build cool projects such as a Telegram bot for your marketing campaign, a reader from a news
RSS feed, and a machine learning model to classify emails to the correct department based
on their content

•	 Create fire-and-forget automation tasks by writing cron jobs, log files, and regexes with
Python scripting

https://www.packtpub.com/product/python-automation-cookbook/9781789133806

302

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just like you, to
help them share their insight with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

http://authors.packtpub.com

303

Hi!

I’m Anish Chapagain, the author of Hands-On Web Scraping with Python Second Edition. I really
hope you enjoyed reading this book and found it useful for increasing your productivity and efficiency
in Web Scraping with Python.

It would really help me (and other potential readers!) if you could leave a review on Amazon sharing
your thoughts on Hands-On Web Scraping with Python Second Edition here.

Go to the link below or scan the QR code to leave your review:

https://packt.link/r/1837636214

Your review will help me to understand what’s worked well in this book, and what could be improved
upon for future editions, so it really is appreciated.

Best Wishes,

Anish Chapagain

https://packt.link/r/1837636214

304

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?
Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below

https://packt.link/free-ebook/9781837636211

2.	 Submit your proof of purchase

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781837636211

	Cover
	Title page
	Copyright and Credits
	Contributors
	Table of Contents
	Preface
	Part 1:
Python and Web Scraping
	Chapter 1: Web Scraping Fundamentals
	Technical requirements
	What is web scraping?
	Understanding the latest web technologies
	HTTP
	HTML
	XML
	JavaScript
	CSS

	Data-finding techniques used in web pages
	HTML source page
	Developer tools

	Summary
	Further reading

	Chapter 2: Python Programming
for Data and Web
	Technical requirements
	Why Python (for web scraping)?
	Accessing the WWW with Python
	Setting things up
	Creating a virtual environment
	Installing libraries
	Loading URLs

	URL handling and operations
	requests – Python library

	Implementing HTTP methods
	GET
	POST

	Summary
	Further reading

	Part 2:
 Beginning Web Scraping
	Chapter 3: Searching and Processing Web Documents
	Technical requirements
	Introducing XPath and CSS selectors to process markup documents
	The Document Object Model (DOM)
	XPath
	CSS selectors

	Using web browser DevTools to access web content
	HTML elements and DOM navigation
	XPath and CSS selectors using DevTools

	Scraping using lxml – a Python library
	lxml by example
	Web scraping using lxml

	Parsing robots.txt and sitemap.xml
	The robots.txt file
	Sitemaps

	Summary
	Further reading

	Chapter 4: Scraping Using PyQuery, a jQuery-Like Library for Python
	Technical requirements
	PyQuery overview
	Introducing jQuery

	Exploring PyQuery
	Installing PyQuery
	Loading a web URL
	Element traversing, attributes, and pseudo-classes
	Iterating using PyQuery

	Web scraping using PyQuery
	Example 1 – scraping book details
	Example 2 – sitemap to CSV
	Example 3 – scraping quotes with author details

	Summary
	Further reading

	Chapter 5: Scraping the Web with Scrapy and Beautiful Soup
	Technical requirements
	Web parsing using Python
	Introducing Beautiful Soup
	Installing Beautiful Soup
	Exploring Beautiful Soup

	Web scraping using Beautiful Soup
	Web scraping using Scrapy
	Setting up a project
	Creating an item
	Implementing the spider
	Exporting data

	Deploying a web crawler
	Summary
	Further reading

	Part 3:
 Advanced Scraping Concepts
	Chapter 6: Working with the Secure Web
	Technical requirements
	Exploring secure web content
	Form processing
	Cookies and sessions
	User authentication

	HTML <form> processing using Python
	User authentication and cookies
	Using proxies
	Summary
	Further reading

	Chapter 7: Data Extraction Using Web APIs
	Technical requirements
	Introduction to web APIs
	Types of API
	Benefits of web APIs

	Data formats and patterns in APIs
	Example 1 – sunrise and sunset
	Example 2 – GitHub emojis
	Example 3 – Open Library

	Web scraping using APIs
	Example 1 – holidays from the US calendar
	Example 2 – Open Library book details
	Example 3 – US cities and time zones

	Summary
	Further reading

	Chapter 8: Using Selenium
to Scrape the Web
	Technical requirements
	Introduction to Selenium
	Advantages and disadvantages of Selenium
	Use cases of Selenium
	Components of Selenium

	Using Selenium WebDriver
	Setting things up
	Exploring Selenium

	Scraping using Selenium
	Example 1 – book information
	Example 2 – forms and searching

	Summary
	Further reading

	Chapter 9: Using Regular
Expressions and PDFs
	Technical requirements
	Overview of regex
	Regex with Python
	re (search, match, and findall)
	re.split
	re.sub
	re.compile
	Regex flags

	Using regex to extract data
	Example 1 – Yamaha dealer information
	Example 2 – data from sitemap
	Example 3 – Godfrey’s dealer

	Data extraction from a PDF
	The PyPDF2 library
	Extraction using PyPDF2

	Summary
	Further reading

	Part 4:
 Advanced
Data-Related Concepts
	Chapter 10: Data Mining, Analysis, and Visualization
	Technical requirements
	Introduction to data mining
	Predictive data mining
	Descriptive data mining

	Handling collected data
	Basic file handling
	JSON
	CSV
	SQLite

	Data analysis and visualization
	Exploratory Data Analysis using ydata_profiling
	pandas and plotly

	Summary
	Further reading

	Chapter 11: Machine Learning and Web Scraping
	Technical requirements
	Introduction to ML
	ML and Python programming
	Types of ML

	ML using scikit-learn
	Simple linear regression
	Multiple linear regression
	Sentiment analysis

	Summary
	Further reading

	Part 5:
 Conclusion
	Chapter 12: After Scraping – Next Steps
and Data Analysis
	Technical requirements
	What happens after scraping?
	Web requests
	pycurl
	Proxies

	Data processing
	PySpark
	polars

	Jobs and careers
	Summary
	Further reading

	Index
	Other Books You May Enjoy

